A054759 Number of Eulerian orientations of the n X n square lattice (with wrap-around), i.e., number of arrow configurations on n X n grid that satisfy the square ice rule.
4, 18, 148, 2970, 143224, 16448400, 4484823396, 2901094068042, 4448410550095612, 16178049740086515288, 139402641051212392498528, 2849295959501939989625992464, 137950545200232788276834783781648, 15844635835975276495290739119895808472
Offset: 1
Keywords
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 412-416.
- Computed by Jennifer Henry in Dec. 1998.
Links
- E. H. Lieb, Residual entropy of square ice, Phys. Rev. 162 (1967) 162-172.
- Steven R. Finch, Lieb's Square Ice Constant [Broken link]
- Steven R. Finch, Lieb's Square Ice Constant [From the Wayback machine]
- Eric Weisstein's World of Mathematics, Torus Grid Graph
Formula
Elliot Lieb proved that lim_{n->oo} a(n)^(1/n^2) = (4/3)^(3/2). See A118273.
Extensions
a(14) from Brendan McKay, Apr 18 2024
Comments