A054780 Number of n-covers of a labeled n-set.
1, 1, 3, 32, 1225, 155106, 63602770, 85538516963, 386246934638991, 6001601072676524540, 327951891446717800997416, 64149416776011080449232990868, 45546527789182522411309599498741023, 118653450898277491435912500458608964207578
Offset: 0
Examples
From _Gus Wiseman_, Dec 19 2023: (Start) Number of ways to choose n nonempty sets with union {1..n}. For example, the a(3) = 32 covers are: {1}{2}{3} {1}{2}{13} {1}{2}{123} {1}{12}{123} {12}{13}{123} {1}{2}{23} {1}{3}{123} {1}{13}{123} {12}{23}{123} {1}{3}{12} {1}{12}{13} {1}{23}{123} {13}{23}{123} {1}{3}{23} {1}{12}{23} {2}{12}{123} {2}{3}{12} {1}{13}{23} {2}{13}{123} {2}{3}{13} {2}{3}{123} {2}{23}{123} {2}{12}{13} {3}{12}{123} {2}{12}{23} {3}{13}{123} {2}{13}{23} {3}{23}{123} {3}{12}{13} {12}{13}{23} {3}{12}{23} {3}{13}{23} (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Mathematica
Join[{1}, Table[Sum[StirlingS1[n+1, k+1]*(2^k - 1)^n, {k, 0, n}]/n!, {n, 1, 15}]] (* Vaclav Kotesovec, Jun 04 2022 *) Table[Length[Select[Subsets[Rest[Subsets[Range[n]]],{n}],Union@@#==Range[n]&]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
-
PARI
a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n)) \\ Andrew Howroyd, Jan 20 2024
Formula
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n).
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n+1, k+1)*(2^k-1)^n.
G.f.: Sum_{n>=0} log(1+(2^n-1)*x)^n/((1+(2^n-1)*x)*n!). - Paul D. Hanna and Vladeta Jovovic, Jan 16 2008
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jun 04 2022
Inverse binomial transform of A367916. - Gus Wiseman, Dec 19 2023
Comments