A054844 Number of ways to write n as the sum of any number of consecutive integers (including the trivial one-term sum n = n).
2, 2, 4, 2, 4, 4, 4, 2, 6, 4, 4, 4, 4, 4, 8, 2, 4, 6, 4, 4, 8, 4, 4, 4, 6, 4, 8, 4, 4, 8, 4, 2, 8, 4, 8, 6, 4, 4, 8, 4, 4, 8, 4, 4, 12, 4, 4, 4, 6, 6, 8, 4, 4, 8, 8, 4, 8, 4, 4, 8, 4, 4, 12, 2, 8, 8, 4, 4, 8, 8, 4, 6, 4, 4, 12, 4, 8, 8, 4, 4, 10, 4, 4, 8, 8, 4, 8, 4, 4, 12, 8, 4, 8, 4, 8, 4, 4, 6, 12, 6
Offset: 1
Examples
a(3) = 4 because 3 = (-2)+(-1)+0+1+2+3 or 0+1+2 or 1+2 or 3; a(13) = 4 because 13 = (-12)+...+13 or (-5)+...+7 or 6+7 or 13. From _Omar E. Pol_, Nov 28 2020: (Start) Illustration of initial terms: Diagram n a(n) _ _ 1 2 _|1 1|_ 2 2 _|1 _ _ 1|_ 3 4 _|1 |1 1| 1|_ 4 2 _|1 _| |_ 1|_ 5 4 _|1 |1 _ _ 1| 1|_ 6 4 _|1 _| |1 1| |_ 1|_ 7 4 _|1 |1 | | 1| 1|_ 8 2 _|1 _| _| |_ |_ 1|_ 9 6 _|1 |1 |1 _ _ 1| 1| 1|_ 10 4 _|1 _| | |1 1| | |_ 1|_ 11 4 _|1 |1 _| | | |_ 1| 1|_ 12 4 _|1 _| |1 | | 1| |_ 1|_ 13 4 _|1 |1 | _| |_ | 1| 1|_ 14 4 _|1 _| _| |1 _ _ 1| |_ |_ 1|_ 15 8 _|1 |1 |1 | |1 1| | 1| 1| 1|_ 16 2 |1 | | | | | | | | 1| ... a(n) is the number of horizontal toothpicks in the n-th level of the diagram. (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
a(n)=2*sumdiv(n,d,d%2)
-
PARI
A054844(n) = (2*numdiv(n>>valuation(n, 2))); \\ Antti Karttunen, Sep 27 2018
Formula
a(n) = 2*A001227(n). - Andrew Niedermaier, Jul 20 2003
G.f.: Sum_{k>0} 2x^k/(1-x^(2k)) = Sum_{k>0} 2x^(2k-1)/(1-x^(2k-1)). - Michael Somos, Sep 20 2005
Extensions
Corrected and extended by Michael Somos, Apr 26 2000
Comments