A054859 Smallest positive integer that can be expressed as the sum of consecutive primes in exactly n ways.
1, 2, 5, 41, 1151, 311, 34421, 218918, 3634531, 48205429, 1798467197, 12941709050, 166400805323, 6123584726269
Offset: 0
Examples
41 = 41 = 11+13+17 = 2+3+5+7+11+13, 41 is the smallest number expressible in 3 ways, so a(3)=41. From _Robert G. Wilson v_, Feb 21 2011: (Start) a(0) = 1 because 1 cannot be expressed as the sum of any set of consecutive primes, a(1) = 2 because 2 is the first prime, a(2) = 5 because 2+3 = 5, a(4) = 1151 because 7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+83+89+97+101 = 223+227+229+233+239 = 379+383+389 = 1151, a(5) = 311 because 11+13+17+19+23+29+31+37+41+43+47 = 31+37+41+43+47+53+59 = 53+59+61+67+71 = 101+103+107 = 311, a(6) = 34421 because 269+271+...+701+709 = 1429+1433+...+1567+1571 = 3793+3797+3803+3821+3823+3833+3847+3851+3853 = 4889+4903+4909+4919+4931+4933+4937 = 11467+11471+11483 = 34421, a(7) = 218918 because 3301+3307+...+3767+3769 = 4561+4567+...+4951+4957 = 5623+5639+...+5881+5897 = 7691+7699+...+7933+7937 = 9851+9857+...+10067+10069 = 13619+13627+...+13723+13729 = 18199+18211+...+18287+18289, a(8) = 3634531 because 313+317+...+7873+7877 = 977+983+...+7933+7937 = 31567+31573+...+32707+32713 = 70997+70999+...+71479+71483 = 73897+73907+...+74413+74419 = 172969+172973+...+173189+173191 = 519161+519193+...+519247+519257 = 3634531, a(9) = 48205429 because 124291+124297+...+128747+128749 = 176303+176317+...+179453+179461 = 331537+331543+...+333383+333397 = 433577+433607+...+434933+434939 = 541061+541087+...+542141+542149 = 2536943+2536991+...+2537303+2537323 = 16068461+16068469+16068499 = 48205429, etc. (End) From _Giovanni Resta_, May 07 2020: (Start) The runs of primes corresponding to a(10)-a(13), in the format first prime (run length), are: a(10) = 1798467197 (1), 599489047 (3), 51384499 (35), 41824483 (43), 14862469 (121), 2233859 (803), 1652909 (1083), 742243 (2371), 280591 (5683), 118297 (10073); a(11) = 6470854519 (2), 2156951369 (6), 431390039 (30), 323542441 (40), 71896949 (180), 56266367 (230), 5574659 (2314), 4481189 (2874), 3547639 (3620), 1487399 (8366), 993197 (12024); a(12) = 166400805323 (1), 55466935091 (3), 18488978293 (9), 3025468583 (55), 155650259 (1069), 135604109 (1227), 50227297 (3311), 29640257 (5605), 19365569 (8561), 6284627 (25655), 3188819 (46977), 429467 (127483); a(13) = 6123584726269 (1), 360210866021 (17), 197534990813 (31), 124971116311 (49), 48217200953 (127), 40023427859 (153), 21188870723 (289), 13225879553 (463), 6166740911 (993), 3642804197 (1681), 2232410683 (2743), 992896649 (6167), 17062531 (311319). (End)
References
- R. K. Guy, Unsolved Problems In Number Theory, C2.
Links
- Leo Moser, Notes on number theory. III. On the sum of consecutive primes, Canad. Math. Bull. 6 (1963), pp. 159-161.
- Carlos Rivera, Puzzle 46. Primes expressible as sum of consecutive primes in K ways, The Prime Puzzles and Problems Connection.
Programs
-
Mathematica
lmt = 500000000; p = Prime@ Range@ PrimePi@ lmt; t = Table[0, {lmt}]; Do[s = 0; j = i; While[s = s + p[[j]]; s <= lmt, t[[s]]++; j++], {i, Length@ p}]; Table[ Position[t, n, 1, 1], {n, 0, 0}] (* Robert G. Wilson v, Feb 21 2011 *)
Extensions
a(10)-a(11) from Bert Dobbelaere, Apr 14 2020
a(12)-a(13) from Giovanni Resta, May 07 2020
Comments