cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054883 Number of walks of length n along the edges of a dodecahedron between two opposite vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 12, 84, 192, 882, 2220, 8448, 22704, 78078, 218988, 710892, 2048256, 6430794, 18837516, 58008216, 171619248, 522598230, 1555243404, 4705481220, 14051590080, 42357719586, 126740502252, 381253030704, 1142062255152, 3431411494062
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Crossrefs

Programs

  • Magma
    [Round((5 +3^n +4*(-2)^n -3*(1+(-1)^n)*5^(n/2))/20): n in [0..30]]; // G. C. Greubel, Feb 07 2023
    
  • Mathematica
    LinearRecurrence[{2,10,-16,-25,30},{0,0,0,0,0,6},30] (* Harvey P. Dale, Nov 13 2021 *)
  • PARI
    concat([0,0,0,0,0], Vec(-6*x^5/((x-1)*(2*x+1)*(3*x-1)*(5*x^2-1)) + O(x^100))) \\ Colin Barker, Dec 21 2014
    
  • SageMath
    def A054883(n): return (5 +3^n +4*(-2)^n -3*(1+(-1)^n)*5^(n/2))/20 -int(n==0)/5
    [A054883(n) for n in range(41)] # G. C. Greubel, Feb 07 2023

Formula

G.f.: (1/20)*(-4 + 5/(1-t) + 1/(1-3*t) + 4/(1+2*t) - 6/(1-5*t^2)).
a(n) = (5 +3^n +(-1)^n*2^(n+2) -3*(1+(-1)^n)*sqrt(5)^n)/20 for n>0.
G.f.: 6*x^5/((1-x)*(1+2*x)*(1-3*x)*(1-5*x^2)). - Colin Barker, Dec 21 2014
E.g.f.: (1/20)*(4*exp(-2*x) + 5*exp(x) + exp(3*x) - 6*cosh(sqrt(5)*x) - 4). - G. C. Greubel, Feb 07 2023