A054881
Number of walks of length n along the edges of an octahedron starting and ending at a vertex and also ( with a(0)=0 ) between two opposite vertices.
Original entry on oeis.org
1, 0, 4, 8, 48, 160, 704, 2688, 11008, 43520, 175104, 698368, 2797568, 11182080, 44744704, 178946048, 715849728, 2863267840, 11453333504, 45812809728, 183252287488, 733007052800, 2932032405504, 11728121233408
Offset: 0
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
-
[(4^n+(-1)^n*2^(n+1)+3*0^n)/6: n in [0..30]]; // Vincenzo Librandi, Apr 23 2015
-
CoefficientList[Series[(1-2*x-4*x^2)/((1+2x)*(1-4x)), {x,0,40}], x] (* L. Edson Jeffery, Apr 22 2015 *)
LinearRecurrence[{2,8}, {1,0,4}, 41] (* G. C. Greubel, Feb 06 2023 *)
-
[(4^n + (-1)^n*2^(n+1) + 3*0^n)/6 for n in range(31)] # G. C. Greubel, Feb 06 2023
A054882
Closed walks of length n along the edges of a dodecahedron based at a vertex.
Original entry on oeis.org
1, 0, 3, 0, 15, 6, 87, 84, 567, 882, 4095, 8448, 32079, 78078, 265863, 710892, 2282631, 6430794, 20009391, 58008216, 177478623, 522598230, 1584540279, 4705481220, 14198074455, 42357719586, 127472924127, 381253030704
Offset: 0
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
-
[Ceiling((5+3^n+(-1)^n*2^(n+2)+3*(1+(-1)^n)*Sqrt(5)^n)/20): n in [0..30]]; // Vincenzo Librandi, Aug 24 2011
-
LinearRecurrence[{2,10,-16,-25,30}, {1,0,3,0,15,6}, 41] (* G. C. Greubel, Feb 07 2023 *)
-
def A054882(n): return (5+3^n+4*(-2)^n+3*(1+(-1)^n)*5^(n/2)+4*0^n)/20
[A054882(n) for n in range(41)] # G. C. Greubel, Feb 07 2023
A054884
Number of closed walks of length n along the edges of an icosahedron based at a vertex.
Original entry on oeis.org
1, 0, 5, 10, 65, 260, 1365, 6510, 32865, 162760, 815365, 4069010, 20352865, 101725260, 508665365, 2543131510, 12715852865, 63578287760, 317892415365, 1589457194010, 7947290852865, 39736429850260
Offset: 0
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
-
[Floor((5^n+(-1)^n*5+3*(1+(-1)^n)*Sqrt(5)^n)/12): n in [0..30]]; // Vincenzo Librandi, Aug 24 2011
-
LinearRecurrence[{4,10,-20,-25},{1,0,5,10},30] (* Harvey P. Dale, May 02 2022 *)
-
a(n) = if(n%2, 5^n-5, 5^n+5+6*5^(n/2))/12; \\ François Marques, Jul 11 2021
-
def A054884(n): return (5^n + 5*(-1)^n + 3*(1 + (-1)^n)*5^(n/2))/12
[A054884(n) for n in range(41)] # G. C. Greubel, Feb 07 2023
A054885
Number of walks of length n along the edges of an icosahedron between two opposite vertices.
Original entry on oeis.org
0, 0, 0, 10, 40, 260, 1240, 6510, 32240, 162760, 812240, 4069010, 20337240, 101725260, 508587240, 2543131510, 12715462240, 63578287760, 317890462240, 1589457194010, 7947281087240, 39736429850260
Offset: 0
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
-
[Floor((5^n+(-1)^n*5-3*(1+(-1)^n)*Sqrt(5)^n)/12): n in [0..30]]; // Vincenzo Librandi, Aug 24 2011
-
LinearRecurrence[{4,10,-20,-25}, {0,0,0,10}, 41] (* G. C. Greubel, Feb 07 2023 *)
-
a(n) = if(n%2, 5^n-5, 5^n+5-6*5^(n/2))/12; \\ François Marques, Jul 11 2021
-
def A054885(n): return (5^n +5*(-1)^n -3*(1+(-1)^n)*5^(n/2))/12
[A054885(n) for n in range(41)] # G. C. Greubel, Feb 07 2023
A375309
Number of walks of length n along the edges of a dodecahedron graph between two vertices at distance two.
Original entry on oeis.org
0, 0, 1, 1, 7, 11, 51, 105, 399, 967, 3299, 8789, 28271, 79443, 247507, 716353, 2193583, 6452639, 19575075, 58095597, 175350735, 522947755, 1574075603, 4706879321, 14146450127, 42363311991, 127217598691, 381275400325, 1144458922159
Offset: 0
-
LinearRecurrence[{2, 10, -16, -25, 30}, {0, 0, 1, 1, 7, 11}, 30] (* Amiram Eldar, Aug 13 2024 *)
Showing 1-5 of 5 results.