A054895 a(n) = Sum_{k>0} floor(n/6^k).
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16
Offset: 0
Keywords
Examples
a(10^0) = 0. a(10^1) = 1. a(10^2) = 18. a(10^3) = 197. a(10^4) = 1997. a(10^5) = 19996. a(10^6) = 199995. a(10^7) = 1999995. a(10^8) = 19999994. a(10^9) = 199999993.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Haskell
a054895 n = a054895_list !! n a054895_list = scanl (+) 0 a122841_list -- Reinhard Zumkeller, Nov 10 2013
-
Magma
function A054895(n) if n eq 0 then return n; else return A054895(Floor(n/6)) + Floor(n/6); end if; return A054895; end function; [A054895(n): n in [0..100]]; // G. C. Greubel, Feb 09 2023
-
Mathematica
Table[t=0; p=6; While[s=Floor[n/p]; t=t+s; s>0, p *= 6]; t, {n,0,100}]
-
SageMath
def A054895(n): if (n==0): return 0 else: return A054895(n//6) + (n//6) [A054895(n) for n in range(104)] # G. C. Greubel, Feb 09 2023
Formula
a(n) = floor(n/6) + floor(n/36) + floor(n/216) + floor(n/1296) + ...
a(n) = (n - A053827(n))/5.
From Hieronymus Fischer, Aug 14 2007: (Start)
a(n) = a(floor(n/6)) + floor(n/6).
a(6*n) = n + a(n).
a(n*6^m) = n*(6^m-1)/5 + a(n).
a(k*6^m) = k*(6^m-1)/5, for 0 <= k < 6, m >= 0.
Asymptotic behavior:
a(n) = (n/5) + O(log(n)).
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/5; equality holds for powers of 6.
a(n) >= ((n-5)/5) - floor(log_6(n)); equality holds for n=6^m-1, m>0.
lim inf (n/5 - a(n)) = 1/5, for n-->oo.
lim sup (n/5 - log_6(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_6(n)) = 0, for n-->oo.
G.f.: (1/(1-x))*Sum_{k > 0} x^(6^k)/(1-x^(6^k)). (End)
Extensions
An incorrect formula was deleted by N. J. A. Sloane, Nov 18 2008
Examples added by Hieronymus Fischer, Jun 06 2012
Comments