cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005134 Number of n-dimensional unimodular lattices (or quadratic forms).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 8, 9, 13, 16, 28, 40, 68, 117, 297, 665, 2566, 17059, 374062
Offset: 0

Views

Author

Keywords

Comments

King gives the lower bounds a(29) >= 37938009 and a(30) >= 20169641025. - Robin Visser, Feb 08 2025

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

If 8 divides n, then a(n) = A054911(n) + A054909(n/8), otherwise a(n) = A054911(n). - Robin Visser, Jan 24 2025
a(n) >= 2*A241121(n)/A241122(n). - Robin Visser, Feb 08 2025

Extensions

a(26)-a(28) added from Bill Allombert's and Gaëtan Chenevier's computations by Robin Visser, Jan 24 2025

A054911 Number of n-dimensional odd unimodular lattices (or quadratic forms).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 9, 13, 16, 28, 40, 68, 117, 273, 665, 2566, 17059, 374062
Offset: 0

Views

Author

N. J. A. Sloane, May 23 2000

Keywords

Comments

a(n) is also the class number of Z^n (the standard lattice with the identity as the basis), as every n-dimensional odd unimodular lattice lies in the same genus as Z^n. - Robin Visser, Jan 24 2025
King gives the lower bounds a(29) >= 37938009 and a(30) >= 20169641025. - Robin Visser, Feb 08 2025

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.

Crossrefs

Programs

  • Magma
    function a(n)
        if n lt 3 then return Min(1,n); end if;
        L := NumberFieldLattice(QNF(), n);
        return #GenusRepresentatives(L);
    end function;  // Robin Visser, Jan 24 2025

Formula

If 8 divides n, then a(n) = A005134(n) - A054909(n/8), otherwise a(n) = A005134(n). - Robin Visser, Jan 24 2025
a(n) >= 2*A241121(n)/A241122(n). - Robin Visser, Feb 08 2025

A054909 Number of 8n-dimensional even unimodular lattices (or quadratic forms).

Original entry on oeis.org

1, 1, 2, 24
Offset: 0

Views

Author

N. J. A. Sloane, May 23 2000

Keywords

Comments

King shows that a(4) >= 1162109024. - Charles R Greathouse IV, Nov 05 2013

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.

Crossrefs

Formula

a(n) = A005134(8*n) - A054911(8*n). - Robin Visser, Jan 24 2025

Extensions

The classical mass formula shows that the next term is at least 8*10^7.
Oliver King and Richard Borcherds (reb(AT)math.berkeley.edu) have recently improved this estimate and have shown that a(4), the number in dimension 32, is at least 10^9 (Jul 22 2000)

A054907 Number of n-dimensional unimodular lattices (or quadratic forms) containing no vectors of norm 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 3, 1, 4, 3, 12, 12, 28, 49, 180, 368, 1901, 14493, 357003
Offset: 0

Views

Author

N. J. A. Sloane, May 23 2000

Keywords

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.

Crossrefs

Cf. A005134 (cumulative sums), A054908, A054909, A054911.

Formula

If 8|n then a(n) = A054908(n) + A054909(n/8), otherwise a(n) = A054908(n). - Andrey Zabolotskiy, Nov 05 2021

Extensions

a(26)-a(28) added from Gaëtan Chenevier's page by Andrey Zabolotskiy, Nov 05 2021
Showing 1-4 of 4 results.