A005134 Number of n-dimensional unimodular lattices (or quadratic forms).
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 8, 9, 13, 16, 28, 40, 68, 117, 297, 665, 2566, 17059, 374062
Offset: 0
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Bill Allombert and Gaëtan Chenevier, Unimodular Hunting II, arXiv:2410.19569 [math.NT], 2024.
- Gaëtan Chenevier, Unimodular Hunting, arXiv:2410.18788 [math.NT], 2024.
- Oliver D. King, A mass formula for unimodular lattices with no roots, Math. Comp., 72 (2003), no. 242, 839-863. See page 854.
Formula
If 8 divides n, then a(n) = A054911(n) + A054909(n/8), otherwise a(n) = A054911(n). - Robin Visser, Jan 24 2025
Extensions
a(26)-a(28) added from Bill Allombert's and Gaëtan Chenevier's computations by Robin Visser, Jan 24 2025
Comments