cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005134 Number of n-dimensional unimodular lattices (or quadratic forms).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 8, 9, 13, 16, 28, 40, 68, 117, 297, 665, 2566, 17059, 374062
Offset: 0

Views

Author

Keywords

Comments

King gives the lower bounds a(29) >= 37938009 and a(30) >= 20169641025. - Robin Visser, Feb 08 2025

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

If 8 divides n, then a(n) = A054911(n) + A054909(n/8), otherwise a(n) = A054911(n). - Robin Visser, Jan 24 2025
a(n) >= 2*A241121(n)/A241122(n). - Robin Visser, Feb 08 2025

Extensions

a(26)-a(28) added from Bill Allombert's and Gaëtan Chenevier's computations by Robin Visser, Jan 24 2025

A054911 Number of n-dimensional odd unimodular lattices (or quadratic forms).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 9, 13, 16, 28, 40, 68, 117, 273, 665, 2566, 17059, 374062
Offset: 0

Views

Author

N. J. A. Sloane, May 23 2000

Keywords

Comments

a(n) is also the class number of Z^n (the standard lattice with the identity as the basis), as every n-dimensional odd unimodular lattice lies in the same genus as Z^n. - Robin Visser, Jan 24 2025
King gives the lower bounds a(29) >= 37938009 and a(30) >= 20169641025. - Robin Visser, Feb 08 2025

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.

Crossrefs

Programs

  • Magma
    function a(n)
        if n lt 3 then return Min(1,n); end if;
        L := NumberFieldLattice(QNF(), n);
        return #GenusRepresentatives(L);
    end function;  // Robin Visser, Jan 24 2025

Formula

If 8 divides n, then a(n) = A005134(n) - A054909(n/8), otherwise a(n) = A005134(n). - Robin Visser, Jan 24 2025
a(n) >= 2*A241121(n)/A241122(n). - Robin Visser, Feb 08 2025

A054909 Number of 8n-dimensional even unimodular lattices (or quadratic forms).

Original entry on oeis.org

1, 1, 2, 24
Offset: 0

Views

Author

N. J. A. Sloane, May 23 2000

Keywords

Comments

King shows that a(4) >= 1162109024. - Charles R Greathouse IV, Nov 05 2013

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.

Crossrefs

Formula

a(n) = A005134(8*n) - A054911(8*n). - Robin Visser, Jan 24 2025

Extensions

The classical mass formula shows that the next term is at least 8*10^7.
Oliver King and Richard Borcherds (reb(AT)math.berkeley.edu) have recently improved this estimate and have shown that a(4), the number in dimension 32, is at least 10^9 (Jul 22 2000)

A054908 Number of n-dimensional odd unimodular lattices (or quadratic forms) containing no vectors of norm 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 4, 3, 12, 12, 28, 49, 156, 368, 1901, 14493, 357003
Offset: 0

Views

Author

N. J. A. Sloane, May 23 2000

Keywords

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.

Crossrefs

Formula

If 8 divides n, then a(n) = A054907(n) - A054909(n/8), otherwise a(n) = A054907(n). - Robin Visser, Jan 24 2025

Extensions

a(26)-a(28) added from Bill Allombert's and Gaëtan Chenevier's computations by Robin Visser, Jan 24 2025

A380746 Number of n-dimensional indecomposable unimodular lattices (or quadratic forms).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 1, 4, 3, 11, 12, 27, 48, 176, 367, 1896, 14489, 356988
Offset: 1

Views

Author

Robin Visser, Jan 31 2025

Keywords

Comments

The sequence {a(n)} is the inverse Euler transform of A005134.
King gives the lower bound a(29) >= 37563933 (using computations of Allombert--Chenevier).

Examples

			For n = 1, the only 1-dimensional indecomposable unimodular lattice is Z, thus a(1) = 1.
For n = 8, the only 8-dimensional indecomposable unimodular lattice is E8, thus a(8) = 1.
For n = 12, the only 12-dimensional indecomposable unimodular lattice is D12+, thus a(12) = 1.
		

References

  • Fu Zu Zhu, Construction of nondecomposable positive definite unimodular quadratic forms. Sci. Sinica Ser. A, 30 (1987), no. 1, 19-31.
  • Fu Zu Zhu, On nondecomposability and indecomposability of quadratic forms, Sci. Sinica Ser. A, 31 (1988), no. 3, 265-273.

Crossrefs

Formula

Product_{k>=1} (1-x^k)^(-a(k)) = 1 + Sum_{k>=1} A005134(k)*x^k.
a(n) <= A054907(n) for all n > 1.
Showing 1-5 of 5 results.