cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054919 Number of nonisomorphic connected unlabeled binary relations on n nodes.

Original entry on oeis.org

1, 2, 7, 86, 2818, 285382, 96324549, 112087100482, 458071928280897, 6665704296529088252, 349377209492194571020053, 66602723163954144515240479674, 46557323273646194397778583902876038, 120168498151800396724425973133360413846262, 1152049915423012273792614840793828654424980146983
Offset: 0

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Examples

			Nonisomorphic connected relations on set {1,2} are {2r1}, {1r1,2r1}, {2r1,2r2}, {1r1,2r1,2r2}, {1r2,2r1}, {1r1,1r2,2r1}, {1r1,1r2,2r1,2r2} so a(2)=7.
		

Crossrefs

Cf. A000595.

Programs

  • Mathematica
    nn=7; c=Join[{1,2}, Table[CycleIndex[Join[PairGroup[SymmetricGroup[n],Ordered], Permutations[Range[n^2-n+1,n^2]],2],s] /. Table[s[i]->2, {i,1,n^2-n}], {n,2,nn}]]; f[x_]:=Sum[a[n]x^n,{n,0,nn}]; b=Sum[c[[n+1]]x^n, {n,0,nn}]; sol=SolveAlways[b==Normal[Series[Product[1/(1-x^i)^a[i], {i,1,nn}], {x,0,nn}]], x]; Table[a[n], {n,1,nn}]/.sol (* Geoffrey Critzer, Mar 31 2013 *)

Formula

Inverse Euler transform of A000595.

Extensions

More terms from Vladeta Jovovic, Jul 16 2000
a(0)=1 prepended and a(13)-a(14) from Andrew Howroyd, Sep 10 2018