A054975 Number of nonnegative integer 3 X 3 matrices with no zero rows or columns and with sum of elements equal to n, up to row and column permutation.
1, 3, 13, 38, 97, 217, 453, 868, 1585, 2756, 4606, 7440, 11679, 17849, 26674, 39060, 56144, 79387, 110575, 151904, 206063, 276332, 366561, 481484, 626586, 808431, 1034636, 1314242, 1657500, 2076601, 2585262, 3199504, 3937370, 4819788
Offset: 3
Examples
There are 3 nonnegative integer 3 X 3 matrices with no zero rows or columns and with sum of elements equal to 4, up to row and column permutation: [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 1 0] [0 1 0] [1 1 0] [1 0 1] [2 0 0].
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..1000
Programs
-
Maple
gf := x^3*(x^14 - 2*x^13 + x^12 - 3*x^11 + 4*x^10 - 3*x^9 + 4*x^8 - x^7 - 4*x^6 + 2*x^5 - x^4 - 5*x^3 - 4*x^2 - 1)/((x^4 - x^3 + x - 1)*(x^3 - 1)^3*(x+1)^3*(x - 1)^5): s := series(gf, x, 101): for i from 3 to 100 do printf(`%d,`,coeff(s,x,i)) od:
Formula
G.f.: x^3*(x^14 - 2*x^13 + x^12 - 3*x^11 + 4*x^10 - 3*x^9 + 4*x^8 - x^7 - 4*x^6 + 2*x^5 - x^4 - 5*x^3 - 4*x^2 - 1)/((x^4 - x^3 + x - 1)*(x^3 - 1)^3*(x + 1)^3*(x - 1)^5).
Extensions
More terms from James Sellers, May 29 2000