cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054975 Number of nonnegative integer 3 X 3 matrices with no zero rows or columns and with sum of elements equal to n, up to row and column permutation.

Original entry on oeis.org

1, 3, 13, 38, 97, 217, 453, 868, 1585, 2756, 4606, 7440, 11679, 17849, 26674, 39060, 56144, 79387, 110575, 151904, 206063, 276332, 366561, 481484, 626586, 808431, 1034636, 1314242, 1657500, 2076601, 2585262, 3199504, 3937370, 4819788
Offset: 3

Views

Author

Vladeta Jovovic, May 28 2000

Keywords

Examples

			There are 3 nonnegative integer 3 X 3 matrices with no zero rows or columns and with sum of elements equal to 4, up to row and column permutation:
[0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 1 0] [0 1 0]
[1 1 0] [1 0 1] [2 0 0].
		

Crossrefs

Column k=3 of A321615.
Cf. A052365.

Programs

  • Maple
    gf := x^3*(x^14 - 2*x^13 + x^12 - 3*x^11 + 4*x^10 - 3*x^9 + 4*x^8 - x^7 - 4*x^6 + 2*x^5 - x^4 - 5*x^3 - 4*x^2 - 1)/((x^4 - x^3 + x - 1)*(x^3 - 1)^3*(x+1)^3*(x - 1)^5): s := series(gf, x, 101): for i from 3 to 100 do printf(`%d,`,coeff(s,x,i)) od:

Formula

G.f.: x^3*(x^14 - 2*x^13 + x^12 - 3*x^11 + 4*x^10 - 3*x^9 + 4*x^8 - x^7 - 4*x^6 + 2*x^5 - x^4 - 5*x^3 - 4*x^2 - 1)/((x^4 - x^3 + x - 1)*(x^3 - 1)^3*(x + 1)^3*(x - 1)^5).

Extensions

More terms from James Sellers, May 29 2000