A055014 Sum of 5th powers of digits of n.
0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 1, 2, 33, 244, 1025, 3126, 7777, 16808, 32769, 59050, 32, 33, 64, 275, 1056, 3157, 7808, 16839, 32800, 59081, 243, 244, 275, 486, 1267, 3368, 8019, 17050, 33011, 59292, 1024, 1025, 1056, 1267, 2048
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- K. Chikawa, K. Iséki, T. Kusakabe, and K. Shibamura, Computation of cyclic parts of Steinhaus problem for power 5, Acta Arithmetica 7 (1962), 253-254. [From _Don Knuth_, Sep 07 2015]
- Index entries for Colombian or self numbers and related sequences
Programs
-
Magma
[0] cat [&+[d^5: d in Intseq(n)]: n in [1..45]]; // Bruno Berselli, Feb 01 2013
-
Maple
A055014 := proc(n) add(d^5,d=convert(n,base,10)) ; end proc: # R. J. Mathar, Jul 08 2012
-
Mathematica
Total/@(IntegerDigits[Range[50]]^5) (* Harvey P. Dale, Jan 22 2011 *) Table[Sum[DigitCount[n][[i]] i^5, {i, 9}], {n, 0, 45}] (* Bruno Berselli, Feb 01 2013 *)
-
PARI
A055014(n)=sum(i=1, #n=digits(n), n[i]^5) \\ M. F. Hasler, Apr 12 2015
Formula
a(n) = Sum_{k>=1} (floor(n/10^k) - 10*floor(n/10^(k+1)))^5. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n) + k^5, 0 <= k < 10. - Hieronymus Fischer, Jun 25 2007
Comments