cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055014 Sum of 5th powers of digits of n.

Original entry on oeis.org

0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 1, 2, 33, 244, 1025, 3126, 7777, 16808, 32769, 59050, 32, 33, 64, 275, 1056, 3157, 7808, 16839, 32800, 59081, 243, 244, 275, 486, 1267, 3368, 8019, 17050, 33011, 59292, 1024, 1025, 1056, 1267, 2048
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

Fixed points are listed in A052464. - M. F. Hasler, Apr 12 2015

Crossrefs

Programs

  • Magma
    [0] cat [&+[d^5: d in Intseq(n)]: n in [1..45]]; // Bruno Berselli, Feb 01 2013
    
  • Maple
    A055014 := proc(n)
       add(d^5,d=convert(n,base,10)) ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    Total/@(IntegerDigits[Range[50]]^5)  (* Harvey P. Dale, Jan 22 2011 *)
    Table[Sum[DigitCount[n][[i]] i^5, {i, 9}], {n, 0, 45}] (* Bruno Berselli, Feb 01 2013 *)
  • PARI
    A055014(n)=sum(i=1, #n=digits(n), n[i]^5) \\ M. F. Hasler, Apr 12 2015

Formula

a(n) = Sum_{k>=1} (floor(n/10^k) - 10*floor(n/10^(k+1)))^5. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n) + k^5, 0 <= k < 10. - Hieronymus Fischer, Jun 25 2007