cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A007953 Digital sum (i.e., sum of digits) of n; also called digsum(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Do not confuse with the digital root of n, A010888 (first term that differs is a(19)).
Also the fixed point of the morphism 0 -> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 1 -> {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 2 -> {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, etc. - Robert G. Wilson v, Jul 27 2006
For n < 100 equal to (floor(n/10) + n mod 10) = A076314(n). - Hieronymus Fischer, Jun 17 2007
It appears that a(n) is the position of 10*n in the ordered set of numbers obtained by inserting/placing one digit anywhere in the digits of n (except a zero before 1st digit). For instance, for n=2, the resulting set is (12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92) where 20 is at position 2, so a(2) = 2. - Michel Marcus, Aug 01 2022
Also the total number of beads required to represent n on a Russian abacus (schoty). - P. Christopher Staecker, Mar 31 2023
a(n) / a(2n) <= 5 with equality iff n is in A169964, while a(n) / a(3n) is unbounded, since if n = (10^k + 2)/3, then a(n) = 3*k+1, a(3n) = 3, so a(n) / a(3n) = k + 1/3 -> oo when k->oo (see Diophante link). - Bernard Schott, Apr 29 2023
Also the number of symbols needed to write number n in Egyptian numerals for n < 10^7. - Wojciech Graj, Jul 10 2025

Examples

			a(123) = 1 + 2 + 3 = 6, a(9875) = 9 + 8 + 7 + 5 = 29.
		

Crossrefs

Programs

  • Haskell
    a007953 n | n < 10 = n
              | otherwise = a007953 n' + r where (n',r) = divMod n 10
    -- Reinhard Zumkeller, Nov 04 2011, Mar 19 2011
    
  • Magma
    [ &+Intseq(n): n in [0..87] ];  // Bruno Berselli, May 26 2011
    
  • Maple
    A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: # R. J. Mathar, Mar 17 2011
  • Mathematica
    Table[Sum[DigitCount[n][[i]] * i, {i, 9}], {n, 50}] (* Stefan Steinerberger, Mar 24 2006 *)
    Table[Plus @@ IntegerDigits @ n, {n, 0, 87}] (* or *)
    Nest[Flatten[# /. a_Integer -> Array[a + # &, 10, 0]] &, {0}, 2] (* Robert G. Wilson v, Jul 27 2006 *)
    Total/@IntegerDigits[Range[0,90]] (* Harvey P. Dale, May 10 2016 *)
    DigitSum[Range[0, 100]] (* Requires v. 14 *) (* Paolo Xausa, May 17 2024 *)
  • PARI
    a(n)=if(n<1, 0, if(n%10, a(n-1)+1, a(n/10))) \\ Recursive, very inefficient. A more efficient recursive variant: a(n)=if(n>9, n=divrem(n, 10); n[2]+a(n[1]), n)
    
  • PARI
    a(n, b=10)={my(s=(n=divrem(n, b))[2]); while(n[1]>=b, s+=(n=divrem(n[1], b))[2]); s+n[1]} \\ M. F. Hasler, Mar 22 2011
    
  • PARI
    a(n)=sum(i=1, #n=digits(n), n[i]) \\ Twice as fast. Not so nice but faster:
    
  • PARI
    a(n)=sum(i=1,#n=Vecsmall(Str(n)),n[i])-48*#n \\ M. F. Hasler, May 10 2015
    /* Since PARI 2.7, one can also use: a(n)=vecsum(digits(n)), or better: A007953=sumdigits. [Edited and commented by M. F. Hasler, Nov 09 2018] */
    
  • PARI
    a(n) = sumdigits(n); \\ Altug Alkan, Apr 19 2018
    
  • Python
    def A007953(n):
        return sum(int(d) for d in str(n)) # Chai Wah Wu, Sep 03 2014
    
  • Python
    def a(n): return sum(map(int, str(n))) # Michael S. Branicky, May 22 2021
    
  • Scala
    (0 to 99).map(.toString.map(.toInt - 48).sum) // Alonso del Arte, Sep 15 2019
    
  • Smalltalk
    "Recursive version for general bases. Set base = 10 for this sequence."
    digitalSum: base
    | s |
    base = 1 ifTrue: [^self].
    (s := self // base) > 0
      ifTrue: [^(s digitalSum: base) + self - (s * base)]
      ifFalse: [^self]
    "by Hieronymus Fischer, Mar 24 2014"
    
  • Swift
    A007953(n): String(n).compactMap{$0.wholeNumberValue}.reduce(0, +) // Egor Khmara, Jun 15 2021

Formula

a(A051885(n)) = n.
a(n) <= 9(log_10(n)+1). - Stefan Steinerberger, Mar 24 2006
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(10n+i) = a(n) + i for 0 <= i <= 9.
a(n) = n - 9*(Sum_{k > 0} floor(n/10^k)) = n - 9*A054899(n). (End)
From Hieronymus Fischer, Jun 17 2007: (Start)
G.f. g(x) = Sum_{k > 0, (x^k - x^(k+10^k) - 9x^(10^k))/(1-x^(10^k))}/(1-x).
a(n) = n - 9*Sum_{10 <= k <= n} Sum_{j|k, j >= 10} floor(log_10(j)) - floor(log_10(j-1)). (End)
From Hieronymus Fischer, Jun 25 2007: (Start)
The g.f. can be expressed in terms of a Lambert series, in that g(x) = (x/(1-x) - 9*L[b(k)](x))/(1-x) where L[b(k)](x) = sum{k >= 0, b(k)*x^k/(1-x^k)} is a Lambert series with b(k) = 1, if k > 1 is a power of 10, else b(k) = 0.
G.f.: g(x) = (Sum_{k > 0} (1 - 9*c(k))*x^k)/(1-x), where c(k) = Sum_{j > 1, j|k} floor(log_10(j)) - floor(log_10(j-1)).
a(n) = n - 9*Sum_{0 < k <= floor(log_10(n))} a(floor(n/10^k))*10^(k-1). (End)
From Hieronymus Fischer, Oct 06 2007: (Start)
a(n) <= 9*(1 + floor(log_10(n))), equality holds for n = 10^m - 1, m > 0.
lim sup (a(n) - 9*log_10(n)) = 0 for n -> oo.
lim inf (a(n+1) - a(n) + 9*log_10(n)) = 1 for n -> oo. (End)
a(n) = A138530(n, 10) for n > 9. - Reinhard Zumkeller, Mar 26 2008
a(A058369(n)) = A004159(A058369(n)); a(A000290(n)) = A004159(n). - Reinhard Zumkeller, Apr 25 2009
a(n) mod 2 = A179081(n). - Reinhard Zumkeller, Jun 28 2010
a(n) <= 9*log_10(n+1). - Vladimir Shevelev, Jun 01 2011
a(n) = a(n-1) + a(n-10) - a(n-11), for n < 100. - Alexander R. Povolotsky, Oct 09 2011
a(n) = Sum_{k >= 0} A031298(n, k). - Philippe Deléham, Oct 21 2011
a(n) = a(n mod b^k) + a(floor(n/b^k)), for all k >= 0. - Hieronymus Fischer, Mar 24 2014
Sum_{n>=1} a(n)/(n*(n+1)) = 10*log(10)/9 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

Extensions

More terms from Hieronymus Fischer, Jun 17 2007
Edited by Michel Marcus, Nov 11 2013

A052464 Fixed points for operation of repeatedly replacing a number with the sum of the fifth power of its digits.

Original entry on oeis.org

0, 1, 4150, 4151, 54748, 92727, 93084, 194979
Offset: 1

Views

Author

Henry Bottomley, Mar 15 2000

Keywords

Comments

Equivalently, numbers equal to the sum of 5th powers of their decimal digits. Since this sum is <= 9^5*d for a d-digit number n >= 10^(d-1), there cannot be such a number with more than 6 digits. - M. F. Hasler, Apr 12 2015

Examples

			a(2) = 4150 since 4^5 + 1^5 + 5^5 + 0^5 = 1024 + 1 + 3125 + 0 = 4150.
		

Crossrefs

Programs

A169666 Numbers divisible by the sum of 5th powers of their digits.

Original entry on oeis.org

1, 10, 100, 110, 111, 1000, 1010, 1011, 1100, 1101, 1110, 1122, 1232, 2112, 2210, 4100, 4150, 4151, 4224, 10000, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11022, 11100, 11122, 11220, 12012, 12110, 12210, 12320, 14550, 20000, 21120, 21321, 22100
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2010

Keywords

Examples

			21321 is a term since 2^5 + 1^5 + 3^5 + 2^5 + 1^5 = 309 and 21321 = 69*309.
54748 is a term since 5^5 + 4^5 + 7^5 + 4^5 + 8^5 = 54748.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 200000 do:l:=evalf(floor(ilog10(n))+1): n0:=n:indic:=0:s5:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s5:=s5+u^5: od:if irem(n,s5)=0 then print (n):else fi:od:
  • Mathematica
    Select[Range[10^4], Divisible[#, Plus @@ (IntegerDigits[#]^5)] &] (* Amiram Eldar, Jan 31 2021 *)
  • PARI
    is_A169666(n)=!(n%sum(i=1,#n=Vecsmall(Str(n)),(n[i]-48)^5))

Formula

A055014(a(n)) | a(n).

Extensions

Corrected and edited by D. S. McNeil, Nov 20 2010
More terms from Amiram Eldar, Jan 31 2021

A226224 The largest value of k in base n for which the sum of digits of k = sqrt(k).

Original entry on oeis.org

1, 25, 9, 64, 100, 144, 49, 64, 81, 225, 121, 441, 169, 441, 441, 256, 289, 324, 361, 1296, 1296, 484, 529, 1089, 625, 676, 729, 2401, 841, 2601, 961, 1024, 3025, 1156, 2500, 4096, 1369, 1444, 4356, 3136, 1681, 4900, 1849, 5929, 3025, 2116, 2209, 6561, 2401
Offset: 2

Views

Author

Keywords

Comments

There are no values of k in base n with more than 3 digits. Proof: such a value with d digits would need to meet the criterion d*(n-1)>=sqrt(n)^d which establishes an upper limit of 4 digits for 2<=n<=6 and 3 for n>6. Because there are no four digit values of k in bases 2 through 6, k has a maximum of three digits in all bases.
Because k must be a square, there are only sqrt(n)^3 possible values in any base.
From the above, it can be shown that for three-digit fixed points of the form xyz, x <= 6; also x<=4 for n>846. These theoretical upper limits are statistically unlikely, and in fact of the 86356 solutions in bases 2 to 10000, only 6.5% of them begin with 2, and none begin with 3 through 6.
a(n)=1 iff A226087(n)=1. Conjecture: this occurs exactly once -- in base 2.

Examples

			For a(16) the solutions are the square numbers {1, 36=6^2, 100=10^2, 225=15^2, 441=21^2} because in base 16 they are written as {1, 24, 64, E1, 1B9} and 1 = 1, 6 = 2+4, 10 = 6+4, 15 = 14+1, and 21 = 1+11+9.
		

Crossrefs

Programs

  • R
    for(n in 2:500) cat("Base",n,":",which(sapply((1:(ifelse(n>6,7,1)*n^ifelse(n>6,1,2)))^2, function(x) sum(inbase(x,n))==sqrt(x)))^2, "\n")

A123253 Sum of 7th powers of digits of n.

Original entry on oeis.org

0, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, 4782969, 1, 2, 129, 2188, 16385, 78126, 279937, 823544, 2097153, 4782970, 128, 129, 256, 2315, 16512, 78253, 280064, 823671, 2097280, 4783097, 2187, 2188, 2315, 4374, 18571, 80312, 282123
Offset: 0

Views

Author

Zerinvary Lajos, Nov 06 2006

Keywords

Comments

Fixed points are listed in A124068 = row n=7 of A252648. - M. F. Hasler, Apr 12 2015

Crossrefs

Programs

  • Magma
    [0] cat [&+[d^7: d in Intseq(n)]: n in [1..40]]; // Bruno Berselli, Feb 01 2013
    
  • Maple
    A123253 := proc(n)
            add(d^7,d=convert(n,base,10)) ;
    end proc: # R. J. Mathar, Jan 16 2013
  • Mathematica
    Table[Sum[DigitCount[n][[i]] i^7, {i, 9}], {n, 0, 40}] (* Bruno Berselli, Feb 01 2013 *)
  • PARI
    A123253(n)=sum(i=1,#n=digits(n),n[i]^7) \\ M. F. Hasler, Apr 12 2015

A226087 Number of values k in base n for which the sum of digits of k = sqrt(k).

Original entry on oeis.org

1, 4, 2, 3, 3, 6, 2, 2, 2, 5, 2, 6, 2, 5, 5, 2, 2, 4, 2, 6, 6, 4, 2, 5, 2, 4, 2, 6, 2, 11, 2, 2, 6, 4, 5, 6, 2, 4, 6, 5, 2, 11, 2, 6, 5, 4, 2, 6, 2, 4, 6, 5, 2, 4, 5, 5, 6, 4, 2, 13, 2, 4, 4, 2, 5, 11, 2, 5, 6, 11, 2, 5, 2, 4, 6, 6, 6, 11, 2, 5, 2, 4, 2, 12, 5
Offset: 2

Views

Author

Keywords

Comments

Values of k in base n have at most 3 digits. Proof: Because sqrt(k) increases faster than the digit sum of k, only numbers with d digits meeting the condition d*(n-1) >= n^(d/2) are candidate fixed points. d < 3 for n > 6, and since there are no fixed points of four or more digits in bases 2 through 5, there are no fixed points in any base with more than 3 digits.
From the above, it can be shown that for three-digit fixed points of the form xyz, x <= 6; also x <= 4 for n > 846. These theoretical upper limits are statistically unlikely, and in fact of the 86356 solutions in bases 2 to 10000, only 6.5% of them begin with 2, and none begin with 3 through 6.

Examples

			For a(16)=5 the solutions are the square numbers {1, 36, 100, 225, 441} because in base 16 they are written as {1, 24, 64, E1, 1B9} and
  sqrt(1) = 1
  sqrt(36) = 6 = 2+4
  sqrt(100) = 10 = 6+4
  sqrt(225) = 15 = 14+1, and
  sqrt(441) = 21 = 1+11+9.
		

Crossrefs

Cf. A226224.
Cf. digital sums for digits at various powers: A007953, A003132, A055012, A055013, A055014, A055015.

Programs

  • R
    sapply(2:16,function(n) sum(sapply((1:(n^ifelse(n>6,1.5,2)))^2, function(x) sum(inbase(x,n))==sqrt(x))))

A226352 Number of integers k in base n whose squared digits sum to sqrt(k).

Original entry on oeis.org

1, 3, 2, 2, 1, 1, 4, 2, 1, 2, 3, 6, 1, 6, 3, 3, 1, 2, 2, 3, 2, 4, 4, 4, 2, 9, 2, 4, 2, 3, 1, 3, 3, 3, 3, 1, 2, 4, 5, 4, 1, 6, 1, 5, 2, 5, 2, 5, 4, 1, 3, 5, 1, 5, 2, 5, 1, 7, 3, 2, 2, 7, 3, 2, 2, 4, 3, 2, 1, 3, 3, 6, 3, 3, 2, 1, 2, 5, 3, 4, 1, 4, 1, 3, 2, 3, 1
Offset: 2

Views

Author

Keywords

Comments

Any d-digit number in base n meeting the criterion must also meet the condition d*(n-1)^2 < n^(d/2). Numerically, it can be shown this limits the candidate values to squares < 22*n^4. The larger values are statistically unlikely, and in fact the largest value of k in the first 1000 bases is ~9.96*n^4 in base 775.

Examples

			In base 8, the four solutions are the values {1,16,256,2601}, which are written as {1,20,400,5051} in base 8 and
sqrt(1)    =  1 = 1^2;
sqrt(16)   =  4 = 2^2 + 0^2;
sqrt(256)  = 16 = 4^2 + 0^2 + 0^2;
sqrt(2601) = 51 = 5^2 + 0^2 + 5^2 + 1^2,
		

Crossrefs

Cf. A226353.
Cf. digital sums for digits at various powers: A007953, A003132, A055012, A055013, A055014, A055015.

Programs

  • R
    inbase=function(n, b) { x=c(); while(n>=b) { x=c(n%%b, x); n=floor(n/b) }; c(n, x) }
    for(n in 2:50) cat("Base", n, ":", which(sapply((1:(4.7*n^2))^2, function(x) sum(inbase(x, n)^2)==sqrt(x)))^2, "\n")

A226353 Largest integer k in base n whose squared digits sum to sqrt(k).

Original entry on oeis.org

1, 49, 169, 36, 1, 1, 2601, 1089, 1, 8836, 33489, 44100, 1, 149769, 128164, 96721, 1, 156816, 1225, 40804, 12321, 831744, 839056, 1149184, 1737124, 3655744, 407044, 1890625, 2208196, 1089, 1, 1466521, 6125625, 2235025, 2832489, 1, 3759721, 6885376, 8844676
Offset: 2

Views

Author

Keywords

Comments

Any d-digit number in base n meeting the criterion must also meet the condition d*(n-1)^2 < n^(d/2). Numerically, it can be shown this limits the candidate values to squares < 22*n^4. The larger values are statistically unlikely, and in fact the largest value of k in the first 1000 bases is ~9.96*n^4 in base 775.
a(n)=1 iff A226352(n)=1.

Examples

			In base 8, the four solutions are the values {1,16,256,2601}, which are written as {1,20,400,5051} in base 8 and
sqrt(1)   = 1  = 1^2
sqrt(16)  = 4  = 2^2+0^2
sqrt(256) = 16 = 4^2+0^2+0^2
sqrt(2601)= 51 = 5^2+0^2+5^2+1^2
		

Crossrefs

Cf. digital sums for digits at various powers: A007953, A003132, A055012, A055013, A055014, A055015.

Programs

  • R
    inbase=function(n,b) { x=c(); while(n>=b) { x=c(n%%b,x); n=floor(n/b) }; c(n,x) }
    for(n in 2:50) cat("Base",n,":",which(sapply((1:(4.7*n^2))^2,function(x) sum(inbase(x,n)^2)==sqrt(x)))^2,"\n")

A055207 Sum of n-th powers of digits of n.

Original entry on oeis.org

1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 1, 2, 4097, 1594324, 268435457, 30517578126, 2821109907457, 232630513987208, 18014398509481985, 1350851717672992090, 1048576, 2097153, 8388608, 94151567435, 281474993487872, 298023223910507557
Offset: 0

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Examples

			a(12) = 1^12 + 2^12 = 1 + 4096 = 4097.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(i^n, i=convert(n, base, 10)):
    seq(a(n), n=0..29);  # Alois P. Heinz, Dec 18 2022
  • Mathematica
    Join[{1},Table[Total[IntegerDigits[n]^n],{n,25}]] (* Harvey P. Dale, Jul 16 2011 *)

A217533 Numbers n such that sum of 5th power of digits of n equals the sum of prime divisors of n.

Original entry on oeis.org

22011, 50124, 220041, 704301, 1056225, 1101023, 1122254, 1404231, 2106855, 2130216, 2221110, 2351565, 3010353, 3130060, 3146247, 3169305, 3968808, 4053412, 4150651, 4213312, 4293261, 4351003, 4499068, 5053964, 5794602, 6277560
Offset: 1

Views

Author

Michel Lagneau, Oct 05 2012

Keywords

Comments

n such that A055014 (n) = A008472(n).

Examples

			22011 =  3*11*23*29  is in the sequence because 2^5 + 2^5 + 0^5 + 1^5 + 1^5 = 3 + 11 + 23 + 29 = 66.
		

Crossrefs

Programs

  • Mathematica
    Rest[Select[Range[8000000], Total[Transpose[FactorInteger[#]][[1]]]==Total[IntegerDigits[#]^5]&]]
Showing 1-10 of 18 results. Next