cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A055025 Norms of Gaussian primes.

Original entry on oeis.org

2, 5, 9, 13, 17, 29, 37, 41, 49, 53, 61, 73, 89, 97, 101, 109, 113, 121, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 361, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 529, 541, 557, 569
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

This is the range of the norm a^2 + b^2 of Gaussian primes a + b i. A239621 lists for each norm value a(n) one of the Gaussian primes as a, b with a >= b >= 0. In A239397, any of these (a, b) is followed by (b, a), except for a = b = 1. - Wolfdieter Lang, Mar 24 2014, edited by M. F. Hasler, Mar 09 2018
From Jean-Christophe Hervé, May 01 2013: (Start)
The present sequence is related to the square lattice, and to its division in square sublattices. Let's say that an integer n divides a lattice if there exists a sublattice of index n. Example: 2, 4, 5 divide the square lattice. Then A001481 (norms of Gaussian integers) is the sequence of divisors of the square lattice. Say that n is a "prime divisor" if the index-n sublattice is not contained in any other sublattice except the original lattice itself. The present sequence gives the "prime divisors" of the square lattice.
Similarly, A055664 (Norms of Eisenstein-Jacobi primes) is the sequence of "prime divisors" of the hexagonal lattice. (End)
The sequence is formed of 2, the prime numbers of form 4k+1, and the square of other primes (of form 4k+3). These are the primitive elements of A001481. With 0 and 1, they are the numbers that are uniquely decomposable in the sum of two squares. - Jean-Christophe Hervé, Nov 17 2013

Examples

			There are 8 Gaussian primes of norm 5, +-1+-2i and +-2+-i, but only two inequivalent ones (2+-i). In A239621 2+i is listed as 2, 1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A16.
  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.

Crossrefs

Cf. A239397, A239621 (Gaussian primes).

Programs

  • Mathematica
    Union[(#*Conjugate[#] & )[ Select[Flatten[Table[a + b*I, {a, 0, 23}, {b, 0, 23}]], PrimeQ[#, GaussianIntegers -> True] & ]]][[1 ;; 55]] (* Jean-François Alcover, Apr 08 2011 *)
    (* Or, from formula: *) maxNorm = 569; s1 = Select[Range[1, maxNorm, 4], PrimeQ]; s3 = Select[Range[3, Sqrt[maxNorm], 4], PrimeQ]^2; Union[{2}, s1, s3]  (* Jean-François Alcover, Dec 07 2012 *)
  • PARI
    list(lim)=my(v=List()); if(lim>=2, listput(v,2)); forprime(p=3,sqrtint(lim\1), if(p%4==3, listput(v,p^2))); forprime(p=5,lim, if(p%4==1, listput(v,p))); Set(v) \\ Charles R Greathouse IV, Feb 06 2017
    
  • PARI
    isA055025(n)=(isprime(n) && n%4<3) || (issquare(n, &n) && isprime(n) && n%4==3) \\ Jianing Song, Aug 15 2023, based on Charles R Greathouse IV's program for A055664

Formula

Consists of 2; rational primes = 1 (mod 4) [A002144]; and squares of rational primes = 3 (mod 4) [A002145^2].
a(n) ~ 2n log n. - Charles R Greathouse IV, Feb 06 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000

A055029 Number of inequivalent Gaussian primes of norm n.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

These are the primes in the ring of integers a+bi, a and b rational integers, i = sqrt(-1).
Two primes are considered equivalent if they differ by multiplication by a unit (+-1, +-i).

Examples

			There are 8 Gaussian primes of norm 5, +-1+-2i and +-2+-i, but only two inequivalent ones (2+-i).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A16.
  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.

Crossrefs

Programs

Formula

a(n) = A055028(n)/4.
a(n) = 2 if n is a prime = 1 (mod 4); a(n) = 1 if n is 2, or p^2 where p is a prime = 3 (mod 4); a(n) = 0 otherwise. - Franklin T. Adams-Watters, May 05 2006
a(n) = if n = 2 then 1 else 2*A079260(n) + A079261(A037213(n)). - Reinhard Zumkeller, Nov 11 2012

Extensions

More terms from Reiner Martin, Jul 20 2001

A055673 Absolute values of norms of primes in ring of integers Z[sqrt(2)].

Original entry on oeis.org

2, 7, 9, 17, 23, 25, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 121, 127, 137, 151, 167, 169, 191, 193, 199, 223, 233, 239, 241, 257, 263, 271, 281, 311, 313, 337, 353, 359, 361, 367, 383, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 521, 569, 577, 593
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

The integers have the form z = a + b*sqrt(2), a and b rational integers. The norm of z is a^2 - 2*b^2, which may be negative.

References

  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VII.

Crossrefs

Programs

  • Mathematica
    maxNorm = 593; s1 = Select[Range[-1, maxNorm, 8], PrimeQ]; s2 = Select[Range[1, maxNorm, 8], PrimeQ]; s3 = Select[Range[-3, Sqrt[maxNorm], 8], PrimeQ]^2; s4 = Select[Range[3, Sqrt[maxNorm], 8], PrimeQ]^2; Union[{2}, s1, s2, s3, s4] (* Jean-François Alcover, Dec 07 2012, from formula *)
  • PARI
    is(n)=!!if(isprime(n), setsearch([1,2,7],n%8), issquare(n,&n) && isprime(n) && setsearch([3,5], n%8)) \\ Charles R Greathouse IV, Sep 10 2016

Formula

Consists of 2; rational primes = +-1 (mod 8); and squares of rational primes = +-3 (mod 8).

Extensions

I would also like to get the sequences (analogous to A055027 and A055029) giving the number of inequivalent primes mod units. Of course now there are infinitely many units.
More terms from Franklin T. Adams-Watters, May 05 2006

A345436 Represent the ring of Gaussian integers E = {x+y*i: x, y rational integers, i = sqrt(-1)} by the cells of a square grid; number the cells of the grid along a counterclockwise square spiral, with the cells representing the ring identities 0, 1 numbered 0, 1. Sequence lists the index numbers of the cells which are 0 or a prime in E.

Original entry on oeis.org

0, 2, 4, 6, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 51, 53, 59, 61, 67, 69, 75, 77, 81, 83, 87, 89, 91, 93, 97, 99, 101, 103, 107, 109, 111, 113, 117, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157
Offset: 1

Views

Author

N. J. A. Sloane, Jun 23 2021

Keywords

Comments

The cell with spiral index m represents the Gaussian integer A174344(m+1) + A274923(m+1) * i. So the set of Gaussian primes is {A174344(a(n)+1) + A274923(a(n)+1) * i : n >= 2}. - Peter Munn, Aug 02 2021
The Gaussian integer z = x+i*y has norm x^2+y^2. There are four units (of norm 1), +-1, +-i. The number of Gaussian integers of norm n is A004018(n).
The norms of the Gaussian primes are listed in A055025, and the number of primes with a given norm is given in A055026.
The successive norms of the Gaussian integers along the square spiral are listed in A336336.

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag; Table 4.2, p. 106.
  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.
  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970; Theorem 8.22 on page 295 lists the nine UFDs of the form Q(sqrt(-d)), cf. A003173.

Crossrefs

Extensions

Name clarified by Peter Munn, Aug 02 2021

A134653 Number of Gaussian primes a+b*i in the first quadrant (a>0,b>=0) such that n

Original entry on oeis.org

0, 1, 3, 2, 2, 2, 5, 4, 2, 4, 7, 2, 4, 6, 2, 8, 8, 8, 7, 6, 8, 6, 5, 6, 10, 8, 6, 10, 8, 8, 9, 10, 8, 12, 10, 10, 8, 10, 8, 6, 14, 14, 7, 14, 10, 12, 11, 16, 16, 10, 8, 16, 18, 12, 10, 14, 14, 12, 17, 14, 16
Offset: 0

Views

Author

Philippe Lallouet (philip.lallouet(AT)orange.fr), Jan 31 2008

Keywords

Comments

This sequence is different from A055026, which counts the primes according to the exact value of their norm. The present one gives an idea of the variation of the density of Gaussian primes.

Examples

			Examples, written as |a+b*i| = norm (2 decimal digits):
n=0: No prime of norm <=1, so a(0) = 0.
|1+1*i| = 1.41 hence a(1) = 1.
|1+2*i| = |2+1*i| = 2.23, |3+0*i| = 3 hence a(2) = 3.
|1+4*i| = |4+1*i| = 4.12 hence a(3) = 2.
		

Crossrefs

Cf. A055026.

Extensions

Offset corrected by Jason Yuen, Sep 25 2024
Showing 1-5 of 5 results.