A035251
Positive numbers of the form x^2 - 2y^2 with integers x, y.
Original entry on oeis.org
1, 2, 4, 7, 8, 9, 14, 16, 17, 18, 23, 25, 28, 31, 32, 34, 36, 41, 46, 47, 49, 50, 56, 62, 63, 64, 68, 71, 72, 73, 79, 81, 82, 89, 92, 94, 97, 98, 100, 103, 112, 113, 119, 121, 124, 126, 127, 128, 136, 137, 142, 144, 146, 151, 153, 158, 161, 162, 164, 167, 169, 175, 178
Offset: 1
The (x,y) pairs, with minimum x, that solve the equation are (1,0), (2,1), (2,0), (3,1), (4,2), (3,0), (4,1), (4,0), (5,2), (6,3), (5,1), (5,0), (6,2), (7,3), (8,4), (6,1), (6,0), (7,2), (8,3), (7,1), (7,0), (10,5), (8,2), ... If the positive number is a perfect square, y=0 yields a trivial solution. - _R. J. Mathar_, Sep 10 2016
- T. D. Noe, Table of n, a(n) for n = 1..1000
- K. Matthews, Thue's theorem and the diophantine equation x^2-D*y^2=+-N, Math. Comp. 71 (239) (2002) 1281-1286.
- K. Matthews, Solving the diophantine equation x^2-D*y^2=N, D>0, (2016).
- Sci.math, General Pell equation: x^2 - N*y^2 = D, 1998
- Sci.math, General Pell equation: x^2 - N*y^2 = D, 1998 [Edited and cached copy]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
-
filter:= proc(n) local F;
F:= select(t -> t[1] mod 8 = 3 or t[1] mod 8 = 5, ifactors(n)[2]);
map(t -> t[2],F)::list(even);
end proc:
select(filter, [$1..1000]); # Robert Israel, Dec 01 2015
-
Reap[For[n = 1, n < 200, n++, r = Reduce[x^2 - 2 y^2 == n, {x, y}, Integers]; If[r =!= False, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)
-
select(x -> x, direuler(p=2,201,1/(1-(kronecker(2,p)*(X-X^2))-X)), 1) \\ Fixed by Andrey Zabolotskiy, Jul 30 2020
-
{a(n) = my(m, c); if( n<1, 0, c=0; m=0; while( cMichael Somos, Aug 17 2006 */
-
is(n)=#bnfisintnorm(bnfinit(z^2-2),n) \\ Ralf Stephan, Oct 14 2013
-
from itertools import count, islice
from sympy import factorint
def A035251_gen(): # generator of terms
return filter(lambda n:all(not((2 < p & 7 < 7) and e & 1) for p, e in factorint(n).items()),count(1))
A035251_list = list(islice(A035251_gen(),30)) # Chai Wah Wu, Jun 28 2022
Better description from Sharon Sela (sharonsela(AT)hotmail.com), Mar 10 2002
A091727
Norms of prime ideals of Z[sqrt(-5)].
Original entry on oeis.org
2, 3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 103, 107, 109, 121, 127, 149, 163, 167, 169, 181, 223, 227, 229, 241, 263, 269, 281, 283, 289, 307, 347, 349, 361, 367, 383, 389, 401, 409, 421, 443, 449, 461, 463, 467, 487
Offset: 1
From _Jianing Song_, Feb 20 2021: (Start)
Let |I| be the norm of an ideal I, then:
|(2, 1+sqrt(-5))| = 2;
|(3, 2+sqrt(-5))| = |(3, 2-sqrt(-5))| = 3;
|(sqrt(-5))| = 5;
|(7, 1+3*sqrt(-5))| = |(7, 1-3*sqrt(-5))| = 7;
|(23, 22+3*sqrt(-5))| = |(23, 22-3*sqrt(-5))| = 23;
|(3 + 2*sqrt(-5))| = |(3 - 2*sqrt(-5))| = 29;
|(6 + sqrt(-5))| = |(6 - sqrt(-5))| = 41. (End)
- David A. Cox, Primes of the form x^2+ny^2, Wiley, 1989.
- A. Frohlich and M. J. Taylor, Algebraic number theory, Cambridge university press, 1991.
The number of distinct ideals with norm n is given by
A035170.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K:
A055673 (D=8),
A341783 (D=5),
A055664 (D=-3),
A055025 (D=-4),
A090348 (D=-7),
A341784 (D=-8),
A341785 (D=-11),
A341786 (D=-15*),
A341787 (D=-19), this sequence (D=-20*),
A341788 (D=-43),
A341789 (D=-67),
A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
-
isA091727(n) = { my(ms = [1, 2, 3, 5, 7, 9], p, e=isprimepower(n,&p)); if(!e || e>2, 0, bitxor(e-1,!!vecsearch(ms,p%20))); }; \\ Antti Karttunen, Feb 24 2020
A341784
Norms of prime elements in Z[sqrt(-2)], the ring of integers of Q(sqrt(-2)).
Original entry on oeis.org
2, 3, 11, 17, 19, 25, 41, 43, 49, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 169, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499, 521, 523, 529, 547, 563
Offset: 1
norm(1 + sqrt(-2)) = norm(1 + sqrt(-2)) = 3;
norm(3 + sqrt(-2)) = norm(3 + sqrt(-2)) = 11;
norm(3 + 2*sqrt(-2)) = norm(3 + 2*sqrt(-2)) = 17;
norm(1 + 3*sqrt(-2)) = norm(1 + 3*sqrt(-2)) = 19.
The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by
A002325.
The total number of elements with norm n is given by
A033715.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K:
A055673 (D=8),
A341783 (D=5),
A055664 (D=-3),
A055025 (D=-4),
A090348 (D=-7), this sequence (D=-8),
A341785 (D=-11),
A341786 (D=-15*),
A341787 (D=-19),
A091727 (D=-20*),
A341788 (D=-43),
A341789 (D=-67),
A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
-
isA341784(n) = my(disc=-8); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)
A341785
Norms of prime elements in Z[(1+sqrt(-11))/2], the ring of integers of Q(sqrt(-11)).
Original entry on oeis.org
3, 4, 5, 11, 23, 31, 37, 47, 49, 53, 59, 67, 71, 89, 97, 103, 113, 137, 157, 163, 169, 179, 181, 191, 199, 223, 229, 251, 257, 269, 289, 311, 313, 317, 331, 353, 361, 367, 379, 383, 389, 397, 401, 419, 421, 433, 443, 449, 463, 467, 487, 499, 509, 521
Offset: 1
norm((1 + sqrt(-11))/2) = norm((1 - sqrt(-11))/2) = 3;
norm((3 + sqrt(-11))/2) = norm((3 - sqrt(-11))/2) = 5;
norm((9 + sqrt(-11))/2) = norm((9 - sqrt(-11))/2) = 23;
norm((5 + 3*sqrt(-11))/2) = norm((5 - 3*sqrt(-11))/2) = 31.
The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by
A035179.
The total number of elements with norm n is given by
A028609.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K:
A055673 (D=8),
A341783 (D=5),
A055664 (D=-3),
A055025 (D=-4),
A090348 (D=-7),
A341784 (D=-8), this sequence (D=-11),
A341786 (D=-15*),
A341787 (D=-19),
A091727 (D=-20*),
A341788 (D=-43),
A341789 (D=-67),
A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
-
isA341785(n) = my(disc=-11); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)
A341786
Norms of prime ideals in Z[(1+sqrt(-15))/2], the ring of integers of Q(sqrt(-15)).
Original entry on oeis.org
2, 3, 5, 17, 19, 23, 31, 47, 49, 53, 61, 79, 83, 107, 109, 113, 121, 137, 139, 151, 167, 169, 173, 181, 197, 199, 211, 227, 229, 233, 241, 257, 263, 271, 293, 317, 331, 347, 349, 353, 379, 383, 409, 421, 439, 443, 467, 499, 503, 541, 557, 563, 571, 587
Offset: 1
Let |I| be the norm of an ideal I, then:
|(2, (1+sqrt(-15))/2)| = |(2, (1-sqrt(-15))/2)| = 2;
|(3, sqrt(-15))| = 3;
|(5, sqrt(-15))| = 5;
|(17, 7+4*sqrt(-15))| = |(17, 7-4*sqrt(-15))| = 17;
|(2 + sqrt(-15))| = |(2 - sqrt(-15))| = 19;
|(23, 17+4*sqrt(-15))| = |(23, 17-4*sqrt(-15))| = 23;
|(4 + sqrt(-15))| = |(4 - sqrt(-15))| = 31.
The number of distinct ideals with norm n is given by
A035175.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K:
A055673 (D=8),
A341783 (D=5),
A055664 (D=-3),
A055025 (D=-4),
A090348 (D=-7),
A341784 (D=-8),
A341785 (D=-11), this sequence (D=-15*),
A341787 (D=-19),
A091727 (D=-20*),
A341788 (D=-43),
A341789 (D=-67),
A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
-
isA341786(n) = my(disc=-15); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)
A341787
Norms of prime elements in Z[(1+sqrt(-19))/2], the ring of integers of Q(sqrt(-19)).
Original entry on oeis.org
4, 5, 7, 9, 11, 17, 19, 23, 43, 47, 61, 73, 83, 101, 131, 137, 139, 149, 157, 163, 169, 191, 197, 199, 229, 233, 239, 251, 263, 271, 277, 283, 311, 313, 347, 349, 353, 359, 367, 389, 397, 419, 443, 457, 461, 463, 467, 479, 491, 499, 503, 541, 557, 571
Offset: 1
norm((1 + sqrt(-19))/2) = norm((1 - sqrt(-19))/2) = 5;
norm((3 + sqrt(-19))/2) = norm((3 - sqrt(-19))/2) = 7;
norm((5 + sqrt(-19))/2) = norm((5 - sqrt(-19))/2) = 11;
norm((7 + sqrt(-19))/2) = norm((7 - sqrt(-19))/2) = 17.
The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by
A035171.
The total number of elements with norm n is given by
A028641.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K:
A055673 (D=8),
A341783 (D=5),
A055664 (D=-3),
A055025 (D=-4),
A090348 (D=-7),
A341784 (D=-8),
A341785 (D=-11),
A341786 (D=-15*), this sequence (D=-19),
A091727 (D=-20*),
A341788 (D=-43),
A341789 (D=-67),
A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
-
isA341787(n) = my(disc=-19); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)
A341788
Norms of prime elements in Z[(1+sqrt(-43))/2], the ring of integers of Q(sqrt(-43)).
Original entry on oeis.org
4, 9, 11, 13, 17, 23, 25, 31, 41, 43, 47, 49, 53, 59, 67, 79, 83, 97, 101, 103, 107, 109, 127, 139, 167, 173, 181, 193, 197, 229, 239, 251, 269, 271, 281, 283, 293, 307, 311, 317, 337, 353, 359, 361, 367, 379, 397, 401, 431, 439, 443, 461, 479, 487, 509
Offset: 1
norm((1 + sqrt(-43))/2) = norm((1 - sqrt(-43))/2) = 11;
norm((3 + sqrt(-43))/2) = norm((3 - sqrt(-43))/2) = 13;
norm((5 + sqrt(-43))/2) = norm((5 - sqrt(-43))/2) = 17;
norm((7 + sqrt(-43))/2) = norm((7 - sqrt(-43))/2) = 23;
...
norm((19 + sqrt(-43))/2) = norm((19 - sqrt(-43))/2) = 101.
The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by
A035147.
The total number of elements with norm n is given by
A138811.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K:
A055673 (D=8),
A341783 (D=5),
A055664 (D=-3),
A055025 (D=-4),
A090348 (D=-7),
A341784 (D=-8),
A341785 (D=-11),
A341786 (D=-15*),
A341787 (D=-19),
A091727 (D=-20*), this sequence (D=-43),
A341789 (D=-67),
A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
-
isA341788(n) = my(disc=-43); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)
A341789
Norms of prime elements in Z[(1+sqrt(-67))/2], the ring of integers of Q(sqrt(-67)).
Original entry on oeis.org
4, 9, 17, 19, 23, 25, 29, 37, 47, 49, 59, 67, 71, 73, 83, 89, 103, 107, 121, 127, 131, 149, 151, 157, 163, 167, 169, 173, 181, 193, 199, 211, 223, 227, 241, 257, 263, 269, 277, 283, 293, 307, 317, 349, 359, 389, 397, 419, 421, 431, 439, 449, 457, 461
Offset: 1
norm((1 + sqrt(-67))/2) = norm((1 - sqrt(-67))/2) = 17;
norm((3 + sqrt(-67))/2) = norm((3 - sqrt(-67))/2) = 19;
norm((5 + sqrt(-67))/2) = norm((5 - sqrt(-67))/2) = 23;
norm((7 + sqrt(-67))/2) = norm((7 - sqrt(-67))/2) = 29;
...
norm((31 + sqrt(-67))/2) = norm((31 - sqrt(-67))/2) = 257.
The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by
A318982.
The total number of elements with norm n is given by
A318984.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K:
A055673 (D=8),
A341783 (D=5),
A055664 (D=-3),
A055025 (D=-4),
A090348 (D=-7),
A341784 (D=-8),
A341785 (D=-11),
A341786 (D=-15*),
A341787 (D=-19),
A091727 (D=-20*),
A341788 (D=-43), this sequence (D=-67),
A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
-
isA341783(n) = my(disc=-67); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)
A341790
Norms of prime elements in Z[(1+sqrt(-163))/2], the ring of integers of Q(sqrt(-163)).
Original entry on oeis.org
4, 9, 25, 41, 43, 47, 49, 53, 61, 71, 83, 97, 113, 121, 131, 151, 163, 167, 169, 173, 179, 197, 199, 223, 227, 251, 263, 281, 289, 307, 313, 347, 359, 361, 367, 373, 379, 383, 397, 409, 419, 421, 439, 457, 461, 487, 499, 503, 523, 529, 547, 563, 577, 593
Offset: 1
norm((1 + sqrt(-163))/2) = norm((1 - sqrt(-163))/2) = 41;
norm((3 + sqrt(-163))/2) = norm((3 - sqrt(-163))/2) = 43;
norm((5 + sqrt(-163))/2) = norm((5 - sqrt(-163))/2) = 47;
norm((7 + sqrt(-163))/2) = norm((7 - sqrt(-163))/2) = 53;
...
norm((79 + sqrt(-163))/2) = norm((79 - sqrt(-163))/2) = 1601.
The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by
A318983.
The total number of elements with norm n is given by
A318985.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K:
A055673 (D=8),
A341783 (D=5),
A055664 (D=-3),
A055025 (D=-4),
A090348 (D=-7),
A341784 (D=-8),
A341785 (D=-11),
A341786 (D=-15*),
A341787 (D=-19),
A091727 (D=-20*),
A341788 (D=-43),
A341789 (D=-67), this sequence (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
-
isA341783(n) = my(disc=-163); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)
A341783
Absolute values of norms of prime elements in Z[(1+sqrt(5))/2], the ring of integers of Q(sqrt(5)).
Original entry on oeis.org
4, 5, 9, 11, 19, 29, 31, 41, 49, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 169, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 289, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 509, 521, 529
Offset: 1
norm((7 + sqrt(5))/2) = norm((7 - sqrt(5))/2) = 11;
norm((9 + sqrt(5))/2) = norm((9 - sqrt(5))/2) = 19;
norm((11 + sqrt(5))/2) = norm((11 - sqrt(5))/2) = 29;
norm(6 + sqrt(5)) = norm(6 - sqrt(5)) = 31.
The number of nonassociative elements with absolute value of norm n (also the number of distinct ideals with norm n) is given by
A035187.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K:
A055673 (D=8), this sequence (D=5),
A055664 (D=-3),
A055025 (D=-4),
A090348 (D=-7),
A341784 (D=-8),
A341785 (D=-11),
A341786 (D=-15*),
A341787 (D=-19),
A091727 (D=-20*),
A341788 (D=-43),
A341789 (D=-67),
A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.
-
isA341783(n) = my(disc=5); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)
Showing 1-10 of 10 results.
Comments