A055079 Smallest number with exactly n nonprime divisors.
1, 4, 8, 12, 30, 24, 36, 48, 60, 72, 2048, 192, 120, 216, 180, 288, 240, 432, 576, 420, 360, 864, 1296, 900, 960, 1728, 720, 840, 1080, 3456, 9216, 1260, 1440, 6912, 34359738368, 1680, 2160, 10368, 2880, 15552, 15360, 3600, 4620, 2520, 4320, 31104
Offset: 1
Examples
a(5) = 30 because it is the first integer which has five nonprime divisors (1, 6, 10, 15 and 30; the divisors 2, 3 and 5 are prime). a(35) = 2^35 = 34359738368. a(71) = 2^71 = 2361183241434822606848. a(191) = 2^191 = 3138550867693340381917894711603833208051177722232017256448.
Links
- Ray Chandler, Table of n, a(n) for n=1..4438
Programs
-
Haskell
a055079 n = head [x | x <- [1..], a033273 x == n] -- Reinhard Zumkeller, Dec 16 2013
-
Mathematica
a = Table[0, {100} ]; Do[ c = Count[ PrimeQ[ Divisors[ n ] ], False]; If[ c < 101 && a[[ c ]] == 0, a[[ c ]] = n], {n, 2, 10077696} ]; Table[SelectFirst[Table[{n,Count[Divisors[n],?(!PrimeQ[#]&)]},{n,10000}],#[[2]]==k&],{k,34}][[;;,1]] (* The program generates the first 34 terms of the sequence. *) (* _Harvey P. Dale, Mar 04 2024 *)
-
PARI
sme(n) = {k = 1; while (sumdiv(k, d, ! isprime(d)) != n, k++); k;} \\ Michel Marcus, Dec 13 2013
Extensions
More terms from Robert G. Wilson v, Nov 20 2000
Edited by Ray Chandler, Aug 12 2010
Comments