A055154 Triangle read by rows: T(n,k) = number of k-covers of a labeled n-set, k=1..2^n-1.
1, 1, 3, 1, 1, 12, 32, 35, 21, 7, 1, 1, 39, 321, 1225, 2919, 4977, 6431, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 1, 120, 2560, 24990, 155106, 711326, 2597410, 7856550, 20135050, 44337150, 84665490, 141118250, 206252550, 265182450, 300540190
Offset: 1
Examples
Triangle begins: [1], [1,3,1], [1,12,32,35,21,7,1], ... There are 35 4-covers of a labeled 3-set.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 165.
Links
- Alois P. Heinz, Rows n = 1..10, flattened
Crossrefs
Programs
-
Mathematica
nn=5;Map[Select[#,#>0&]&,Transpose[Table[Table[Sum[(-1)^j Binomial[n,j] Binomial[2^(n-j)-1,m],{j,0,n}],{n,1,nn}],{m,1,2^nn-1}]]]//Grid (* Geoffrey Critzer, Jun 27 2013 *)
Formula
T(n,k) = Sum_{j=0..n} (-1)^j*C(n, j)*C(2^(n-j)-1, k), k=1..2^n-1.
From Vladeta Jovovic, May 30 2004: (Start)
T(n,k) = (1/k!)*Sum_{j=0..k} Stirling1(k+1, j+1)*(2^j-1)^n.
E.g.f.: Sum(exp(y*(2^n-1))*log(1+x)^n/n!, n=0..infinity)/(1+x). (End)
Also exp(-y)*Sum((1+x)^(2^n-1)*y^n/n!, n=0..infinity).
From Manfred Boergens, Apr 11 2024: (Start)
T(n,k) = C(2^n-1,k) for k>=2^(n-1).
T(n,k) < C(2^n-1,k) for k<2^(n-1).
(Note: C(2^n-1,k) is the number of all k-subsets of P([n])\{{}}.) (End)
Comments