cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055192 Number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block, up to isomorphism.

Original entry on oeis.org

1, 2, 5, 12, 35, 108, 393, 1666, 8543, 54190, 436740, 4565450, 62930604, 1156277748, 28509174012, 946786816168, 42448800498744, 2573207315483554, 211180300735118954, 23490473719472829824, 3545759835559406756008, 727077827560669587718290
Offset: 2

Views

Author

Vladeta Jovovic, Jun 18 2000

Keywords

Comments

Also the number of connected split graphs on n vertices (cf. A048194). - Falk Hüffner, Dec 01 2015
Inverse Euler transform is A007776. - Andrew Howroyd, Oct 03 2018

Crossrefs

Equals second differences of A049312.
Row sums of A056152 and also of A122083.

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[ Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    A049312[d_] := Sum[A[n, d - n], {n, 0, d}];
    Differences[Table[A049312[n], {n, 0, 23}], 2] (* Jean-François Alcover, Sep 05 2019, after Alois P. Heinz in A049312 *)