A055212 Number of composite divisors of n.
0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 3, 0, 3, 0, 3, 1, 1, 0, 5, 1, 1, 2, 3, 0, 4, 0, 4, 1, 1, 1, 6, 0, 1, 1, 5, 0, 4, 0, 3, 3, 1, 0, 7, 1, 3, 1, 3, 0, 5, 1, 5, 1, 1, 0, 8, 0, 1, 3, 5, 1, 4, 0, 3, 1, 4, 0, 9, 0, 1, 3, 3, 1, 4, 0, 7, 3, 1, 0, 8, 1, 1, 1, 5, 0, 8, 1, 3, 1, 1, 1, 9, 0, 3, 3, 6, 0, 4, 0, 5, 4
Offset: 1
Examples
a[20] = 3 because the composite divisors of 20 are 4, 10, 20.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a055212 = subtract 1 . a033273 -- Reinhard Zumkeller, Sep 15 2015
-
Mathematica
Table[ Count[ PrimeQ[ Divisors[n] ], False] - 1, {n, 1, 105} ] Table[Count[Divisors[n],?CompositeQ],{n,120}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, Jul 09 2018 *) a[n_] := DivisorSigma[0, n] - PrimeNu[n] - 1; Array[a, 100] (* Amiram Eldar, Jun 18 2022 *)
-
PARI
a(n) = numdiv(n) - omega(n) - 1; \\ Michel Marcus, Oct 17 2015
Formula
a(n) = A033273(n) - 1.
G.f.: -x/(1 - x) + Sum_{k>=1} (x^k - x^prime(k))/((1 - x^k)*(1 - x^prime(k))). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) ~ n*log(n) - n*log(log(n)) + (2*gamma - 2 - B)*n, where gamma is Euler's constant (A001620) and B is Mertens's constant (A077761). - Amiram Eldar, Dec 07 2023
Comments