cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055244 Number of certain stackings of n+1 squares on a double staircase.

Original entry on oeis.org

1, 1, 3, 6, 12, 23, 43, 79, 143, 256, 454, 799, 1397, 2429, 4203, 7242, 12432, 21271, 36287, 61739, 104791, 177476, 299978, 506111, 852457, 1433593, 2407443, 4037454, 6762708, 11314391, 18909139, 31569799, 52657247, 87751624
Offset: 0

Views

Author

Wolfdieter Lang, May 10 2000

Keywords

Comments

a(n)= G_{n+1} of Turban reference eq.(3.9).
Equals A046854 * [1,2,3,...]. - Gary W. Adamson, Dec 23 2008
(1 + x + 3x^2 + 6x^3 + ...) = (1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + ...) * (1 + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 + ...). -Gary W. Adamson, Jul 27 2010
Column 1 of A194540. - R. H. Hardin, Aug 28 2011

References

  • L. Turban, Lattice animals on a staircase and Fibonacci numbers, J.Phys. A 33 (2000) 2587-2595.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[1,-1,2,-4]]). Matrix(4, (i,j)-> if (i=j-1) then 1 elif j=1 then [2,1,-2,-1][i] else 0 fi)^(n))[1,1] ; seq (a(n), n=0..33); # Alois P. Heinz, Aug 05 2008
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = (((n-4)*n-6)*a[n-2] + ((n-5)*n-11)*a[n-1]) / ((n-6)*n-1); Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 11 2014 *)
    CoefficientList[Series[(1 - x + x^3)/(1 - x - x^2)^2, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 13 2014 *)
    LinearRecurrence[{2,1,-2,-1},{1,1,3,6},60] (* Harvey P. Dale, Jul 13 2022 *)

Formula

G.f.: (1-x+x^3)/(1-x-x^2)^2. (from Turban reference eq.(3.3) with t=1).
a(n) = ((n+5)*F(n+1)+(2*n-3)*F(n))/5 with F(n)=A000045(n) (Fibonacci numbers) (from Turban reference eq.(3.9)).
a(n) = A001629(n+1) + F(n-1). - Gary W. Adamson, Jul 27 2007
a(n) = (((n-4)*n-6)*a(n-2) + ((n-5)*n-11)*a(n-1)) / ((n-6)*n-1). - Jean-François Alcover, Mar 11 2014