A055251 Eighth column of triangle A055249.
1, 10, 57, 244, 874, 2772, 8054, 21920, 56751, 141326, 341303, 804276, 1858080, 4223784, 9474444, 21018144, 46195149, 100734354, 218190469, 469866964, 1006759110, 2147634364, 4563581746, 9663887808, 20401343003, 42949963286, 90194651043, 188978952404
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-43,104,-155,146,-85,28,-4).
Programs
-
Maple
a:= n-> (Matrix(8, (i,j)-> if (i=j-1) then 1 elif j=1 then [10,-43,104,-155, 146,-85,28,-4][i] else 0 fi)^(n))[1,1]: seq(a(n), n=0..25); # Alois P. Heinz, Aug 05 2008
-
Mathematica
Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 6, k + 6], {k, 0, n}], {n, 1, 26}] (* Zerinvary Lajos, Jul 08 2009 *)
-
PARI
Vec(1 / ((1 - x)^6*(1 - 2*x)^2) + O(x^30)) \\ Colin Barker, Sep 20 2017
Formula
G.f.: 1 / (((1-2*x)^2)*(1-x)^6).
a(n) = A055249(n+7, 7).
For n >= 1, a(n) = A035039(n+7) + Sum_{j=0..n-1} a(j).
a(n) = Sum_{k=0..n+6} Sum_{i=0..n+6} (i-k) * C(n-k+6,i+4). - Wesley Ivan Hurt, Sep 19 2017
a(n) = (1/120)*(38520 - 75*2^(9+n) + 2*(9637 + 15*2^(8+n))*n + 4285*n^2 + 525*n^3 + 35*n^4 + n^5). - Colin Barker, Sep 20 2017
Comments