cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055251 Eighth column of triangle A055249.

Original entry on oeis.org

1, 10, 57, 244, 874, 2772, 8054, 21920, 56751, 141326, 341303, 804276, 1858080, 4223784, 9474444, 21018144, 46195149, 100734354, 218190469, 469866964, 1006759110, 2147634364, 4563581746, 9663887808, 20401343003, 42949963286, 90194651043, 188978952404
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

A045618 Partial sums of A000337(n+4),n>=0,
A045889 Partial sums of A045618,
A034009 Partial sums of A045889,
(A055250 Seventh column of triangle A055249) Partial sums of A034009,
(A055251 Eighth column of triangle A055249) Partial sums of A055250. - Vladimir Joseph Stephan Orlovsky, Jul 09 2011

Crossrefs

Cf. A055249, A035039, partial sums of A055250.

Programs

  • Maple
    a:= n-> (Matrix(8, (i,j)-> if (i=j-1) then 1 elif j=1 then [10,-43,104,-155, 146,-85,28,-4][i] else 0 fi)^(n))[1,1]: seq(a(n), n=0..25); # Alois P. Heinz, Aug 05 2008
  • Mathematica
    Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 6, k + 6], {k, 0, n}], {n, 1, 26}] (* Zerinvary Lajos, Jul 08 2009 *)
  • PARI
    Vec(1 / ((1 - x)^6*(1 - 2*x)^2) + O(x^30)) \\ Colin Barker, Sep 20 2017

Formula

G.f.: 1 / (((1-2*x)^2)*(1-x)^6).
a(n) = A055249(n+7, 7).
For n >= 1, a(n) = A035039(n+7) + Sum_{j=0..n-1} a(j).
a(n) = Sum_{k=0..n+6} Sum_{i=0..n+6} (i-k) * C(n-k+6,i+4). - Wesley Ivan Hurt, Sep 19 2017
a(n) = (1/120)*(38520 - 75*2^(9+n) + 2*(9637 + 15*2^(8+n))*n + 4285*n^2 + 525*n^3 + 35*n^4 + n^5). - Colin Barker, Sep 20 2017