cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055271 a(n) = 5*a(n-1) - a(n-2) with a(0)=1, a(1)=7.

Original entry on oeis.org

1, 7, 34, 163, 781, 3742, 17929, 85903, 411586, 1972027, 9448549, 45270718, 216905041, 1039254487, 4979367394, 23857582483, 114308545021, 547685142622, 2624117168089, 12572900697823, 60240386321026, 288629030907307, 1382904768215509, 6625894810170238, 31746569282635681, 152106951603008167
Offset: 0

Views

Author

Barry E. Williams, May 10 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Cf. A030221.

Programs

  • Magma
    I:=[1,7]; [n le 2 select I[n] else 5*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Mar 16 2020
    
  • Maple
    A055271:= n-> simplify(ChebyshevU(n, 5/2) + 2*ChebyshevU(n-1, 5/2)); seq(A055271(n), n=0..30); # G. C. Greubel, Mar 16 2020
  • Mathematica
    LinearRecurrence[{5,-1}, {1,7}, 30] (* G. C. Greubel, Mar 16 2020 *)
  • Sage
    [chebyshev_U(n, 5/2) + 2*chebyshev_U(n-1, 5/2) for n in (0..30)] # G. C. Greubel, Mar 16 2020

Formula

a(n) = (7*(((5+sqrt(21))/2)^n - ((5-sqrt(21))/2)^n) - (((5+sqrt(21))/2)^(n-1) - ((5-sqrt(21))/2)^(n-1)))/sqrt(21).
G.f.: (1+2*x)/(1-5*x+x^2).
a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-8)^k. - Philippe Deléham, Mar 05 2014
a(n) = ChebyshevT(n, 5/2) + (9/2)*ChebyshevU(n-1,5/2) = ChebyshevU(n, 5/2) + 2*ChebyshevU(n-1, 5/2). - G. C. Greubel, Mar 16 2020

Extensions

Terms a(22) onward added by G. C. Greubel, Mar 16 2020