A108306
Expansion of (3*x+1)/(1-3*x-3*x^2).
Original entry on oeis.org
1, 6, 21, 81, 306, 1161, 4401, 16686, 63261, 239841, 909306, 3447441, 13070241, 49553046, 187869861, 712268721, 2700415746, 10238053401, 38815407441, 147160382526, 557927369901, 2115263257281, 8019571881546, 30404505416481, 115272231894081
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (3,3).
-
I:=[1,6]; [n le 2 select I[n] else 3*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 01 2016
-
seriestolist(series((3*x+1)/(1-3*x-3*x^2), x=0,25));
-
CoefficientList[Series[(3 x + 1) / (1 - 3 x - 3 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 01 2016 *)
A207607
Triangle of coefficients of polynomials v(n,x) jointly generated with A207606; see Formula section.
Original entry on oeis.org
1, 1, 2, 1, 5, 2, 1, 9, 9, 2, 1, 14, 25, 13, 2, 1, 20, 55, 49, 17, 2, 1, 27, 105, 140, 81, 21, 2, 1, 35, 182, 336, 285, 121, 25, 2, 1, 44, 294, 714, 825, 506, 169, 29, 2, 1, 54, 450, 1386, 2079, 1716, 819, 225, 33, 2, 1, 65, 660, 2508, 4719, 5005, 3185, 1240, 289, 37, 2
Offset: 1
First five rows:
1;
1, 2;
1, 5, 2;
1, 9, 9, 2;
1, 14, 25, 13, 2;
Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 5, 2, 0;
1, 9, 9, 2, 0;
1, 14, 25, 13, 2, 0;
1, 20, 55, 49, 17, 2, 0;
...
1 = 2*1 - 1, 20 = 2*14 + 1 - 9, 55 = 2*25 + 14 - 9, 49 = 2*13 + 25 - 2, 17 = 2*2 + 1 - 0, 2 = 2*0 + 2 - 0. - _Philippe Deléham_, Mar 03 2012
-
A207607:= (n,k) -> `if`(k=1, 1, binomial(n+k-3, 2*k-2) + 2*binomial(n+k-3, 2*k-3) ); seq(seq(A207607(n, k), k = 1..n), n = 1..10); # G. C. Greubel, Mar 15 2020
-
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207606 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207607 *)
(* Second program *)
Table[If[k==1, 1, Binomial[n+k-3, 2*k-2] + 2*Binomial[n+k-3, 2*k-3]], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
-
from sympy import Poly
from sympy.abc import x
def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
def v(n, x): return 1 if n==1 else x*u(n - 1, x) + (x + 1)*v(n - 1, x)
def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
-
def T(n, k):
if k == 1: return 1
else: return binomial(n+k-3, 2*k-2) + 2*binomial(n+k-3, 2*k-3)
[[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 15 2020
A107402
a(n)= -a(n-1) +5*a(n-2) +5*a(n-3) -a(n-4) -a(n-5).
Original entry on oeis.org
0, 1, 1, 2, 3, 11, 12, 55, 55, 266, 261, 1277, 1248, 6121, 5977, 29330, 28635, 140531, 137196, 673327, 657343, 3226106, 3149517, 15457205, 15090240, 74059921, 72301681, 354842402, 346418163, 1700152091, 1659789132, 8145918055
Offset: 0
-
m = 5 M = {{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}, {-1, -1, m, m, -1}} Expand[Det[M - x*IdentityMatrix[5]]] NSolve[Det[M - x*IdentityMatrix[5]] == 0, x] v[1] = {0, 1, 1, 2, 3} digits = 50 v[n_] := v[n] = M.v[n - 1] a = Table[v[n][[1]], {n, 1, digits}]
LinearRecurrence[{-1,5,5,-1,-1},{0,1,1,2,3},40] (* Harvey P. Dale, Sep 23 2012 *)
Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009
Showing 1-3 of 3 results.
Comments