cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108306 Expansion of (3*x+1)/(1-3*x-3*x^2).

Original entry on oeis.org

1, 6, 21, 81, 306, 1161, 4401, 16686, 63261, 239841, 909306, 3447441, 13070241, 49553046, 187869861, 712268721, 2700415746, 10238053401, 38815407441, 147160382526, 557927369901, 2115263257281, 8019571881546, 30404505416481, 115272231894081
Offset: 0

Views

Author

Creighton Dement, Jul 24 2005

Keywords

Comments

Binomial transform is A055271. May be seen as a ibasefor-transform of the zero-sequence A000004 with respect to the floretion given in the program code.
The sequence is the INVERT transform of (1, 5, 10, 20, 40, 80, 160, ...) and can be obtained by extracting the upper left terms of matrix powers of [(1,5); (1,2)]. These results are a case (a=5, b=2) of the conjecture: The INVERT transform of a sequence starting (1, a, a*b, a*b^2, a*b^3, ...) is equivalent to extracting the upper left terms of powers of the 2x2 matrix [(1,a); (1,b)]. - Gary W. Adamson, Jul 31 2016
From Klaus Purath, Mar 09 2023: (Start)
For any terms (a(n), a(n+1)) = (x, y), -3*x^2 - 3*x*y + y^2 = 15*(-3)^n = A082111(2)*(-3)^n. This is valid in general for all recursive sequences (t) with constant coefficients (3,3) and t(0) = 1: -3*x^2 - 3*x*y + y^2 = A082111(t(1)-4)*(-3)^n.
By analogy to this, for three consecutive terms (x, y, z) of any sequence (t) of the form (3,3) with t(0) = 1: y^2 - x*z = A082111(t(1)-4)*(-3)^n. (End)

Crossrefs

Cf. A055271.
Cf. A084057.

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 3*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 01 2016
  • Maple
    seriestolist(series((3*x+1)/(1-3*x-3*x^2), x=0,25));
  • Mathematica
    CoefficientList[Series[(3 x + 1) / (1 - 3 x - 3 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 01 2016 *)

Formula

Recurrence: a(0)=1; a(1)=6; a(n) = 3a(n-1) + 3a(n-2) - N-E. Fahssi, Apr 20 2008

A207607 Triangle of coefficients of polynomials v(n,x) jointly generated with A207606; see Formula section.

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 1, 9, 9, 2, 1, 14, 25, 13, 2, 1, 20, 55, 49, 17, 2, 1, 27, 105, 140, 81, 21, 2, 1, 35, 182, 336, 285, 121, 25, 2, 1, 44, 294, 714, 825, 506, 169, 29, 2, 1, 54, 450, 1386, 2079, 1716, 819, 225, 33, 2, 1, 65, 660, 2508, 4719, 5005, 3185, 1240, 289, 37, 2
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2012

Keywords

Comments

Subtriangle of the triangle T(n,k) given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012

Examples

			First five rows:
  1;
  1,  2;
  1,  5,  2;
  1,  9,  9,  2;
  1, 14, 25, 13,  2;
Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, ...) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  5,  2,  0;
  1,  9,  9,  2,  0;
  1, 14, 25, 13,  2,  0;
  1, 20, 55, 49, 17,  2,  0;
  ...
1 = 2*1 - 1, 20 = 2*14 + 1 - 9, 55 = 2*25 + 14 - 9, 49 = 2*13 + 25 - 2, 17 = 2*2 + 1 - 0, 2 = 2*0 + 2 - 0. - _Philippe Deléham_, Mar 03 2012
		

Crossrefs

Cf. A207606.

Programs

  • Maple
    A207607:= (n,k) -> `if`(k=1, 1, binomial(n+k-3, 2*k-2) + 2*binomial(n+k-3, 2*k-3) ); seq(seq(A207607(n, k), k = 1..n), n = 1..10); # G. C. Greubel, Mar 15 2020
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207606 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207607 *)
    (* Second program *)
    Table[If[k==1, 1, Binomial[n+k-3, 2*k-2] + 2*Binomial[n+k-3, 2*k-3]], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else x*u(n - 1, x) + (x + 1)*v(n - 1, x)
    def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
    
  • Sage
    def T(n, k):
        if k == 1: return 1
        else: return binomial(n+k-3, 2*k-2) + 2*binomial(n+k-3, 2*k-3)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 15 2020

Formula

u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = x*u(n-1,x) + (x+1)v(n-1,x), where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Mar 03 2012
G.f.: (1-x+y*x)/(1-(y+2)*x+x^2). - Philippe Deléham, Mar 03 2012
For n >= 1, Sum{k=0..n} T(n,k)*x^k = A000012(n), A001906(n), A001834(n-1), A055271(n-1), A038761(n-1), A056914(n-1) for x = 0, 1, 2, 3, 4, 5 respectively. - Philippe Deléham, Mar 03 2012
T(n,k) = C(n+k-1,2*k) + 2*C(n+k-1,2*k-1). where C is binomial. - Yuchun Ji, May 23 2019
T(n,k) = T(n-1,k) + A207606(n,k-1). - Yuchun Ji, May 28 2019
Sum_{k=1..n} T(n, k)*x^k = { 4*(-1)^(n-1)*A016921(n-1) (x=-4), 3*(-1)^(n-1) * A130815(n-1) (x=-3), 2*(-1)^(n-1)*A010684(n-1) (x=-2), A057079(n+1) (x=-1), 0 (x=0), A001906(n) = Fibonacci(2*n) (x=1), 2*A001834(n-1) (x=2), 3*A055271(n-1) (x=3), 4*A038761(n-1) (x=4) }. - G. C. Greubel, Mar 15 2020

A107402 a(n)= -a(n-1) +5*a(n-2) +5*a(n-3) -a(n-4) -a(n-5).

Original entry on oeis.org

0, 1, 1, 2, 3, 11, 12, 55, 55, 266, 261, 1277, 1248, 6121, 5977, 29330, 28635, 140531, 137196, 673327, 657343, 3226106, 3149517, 15457205, 15090240, 74059921, 72301681, 354842402, 346418163, 1700152091, 1659789132, 8145918055
Offset: 0

Views

Author

Roger L. Bagula, May 25 2005

Keywords

Programs

  • Mathematica
    m = 5 M = {{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}, {-1, -1, m, m, -1}} Expand[Det[M - x*IdentityMatrix[5]]] NSolve[Det[M - x*IdentityMatrix[5]] == 0, x] v[1] = {0, 1, 1, 2, 3} digits = 50 v[n_] := v[n] = M.v[n - 1] a = Table[v[n][[1]], {n, 1, digits}]
    LinearRecurrence[{-1,5,5,-1,-1},{0,1,1,2,3},40] (* Harvey P. Dale, Sep 23 2012 *)

Formula

G.f.: -x*(5*x^3+2*x^2-2*x-1)/((x+1)*(x^4-5*x^2+1)). [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009]
a(0)=0, a(2n) = (1/3)*(A055271(n)+2).

Extensions

Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009
Showing 1-3 of 3 results.