A084057
a(n) = 2*a(n-1) + 4*a(n-2), a(0)=1, a(1)=1.
Original entry on oeis.org
1, 1, 6, 16, 56, 176, 576, 1856, 6016, 19456, 62976, 203776, 659456, 2134016, 6905856, 22347776, 72318976, 234029056, 757334016, 2450784256, 7930904576, 25664946176, 83053510656, 268766806016, 869747654656, 2814562533376, 9108115685376, 29474481504256
Offset: 0
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
The following sequences (and others) belong to the same family:
A001333,
A000129,
A026150,
A002605,
A046717,
A015518,
A084057,
A063727,
A002533,
A002532,
A083098,
A083099,
A083100,
A015519.
-
I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 31 2016
-
f[n_] := Simplify[((1 + Sqrt[5])^n + (1 - Sqrt[5])^n)/2]; Array[f, 28, 0] (* Or *)
LinearRecurrence[{2, 4}, {1, 1}, 28] (* Robert G. Wilson v, Sep 18 2013 *)
RecurrenceTable[{a[1] == 1, a[2] == 1, a[n] == 2 a[n-1] + 4 a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Jul 31 2016 *)
Table[2^(n-1) LucasL[n], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 19 2016 *)
-
lucas(n)=fibonacci(n-1)+fibonacci(n+1)
a(n)=lucas(n)/2*2^n \\ Charles R Greathouse IV, Sep 18 2013
-
from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,1,2,4, lambda n: 0); [next(it) for i in range(1,26)] # Zerinvary Lajos, Jul 09 2008
-
[lucas_number2(n,2,-4)/2 for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009
A015449
Expansion of (1-4*x)/(1-5*x-x^2).
Original entry on oeis.org
1, 1, 6, 31, 161, 836, 4341, 22541, 117046, 607771, 3155901, 16387276, 85092281, 441848681, 2294335686, 11913527111, 61861971241, 321223383316, 1667978887821, 8661117822421, 44973567999926, 233528957822051
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Joerg Arndt, Matters Computational (The Fxtbook)
- Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae (2023). See p. 16.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (5,1).
-
a:=[1,1];; for n in [3..30] do a[n]:=5*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
-
[n le 2 select 1 else 5*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 06 2012
-
a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=5*a[n-1]+a[n-2] od: seq(a[n], n=0..21); # Zerinvary Lajos, Jul 26 2006
-
Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{1,5},#]}]&, {1,1},40]][[1]] (* Harvey P. Dale, Mar 23 2011 *)
LinearRecurrence[{5,1}, {1,1}, 30] (* Vincenzo Librandi, Nov 06 2012 *)
CoefficientList[Series[(1-4*x)/(1-5*x-x^2), {x,0,30}], x] (* G. C. Greubel, Dec 19 2017 *)
Sum[Fibonacci[Range[30] +k-2, 5], {k,0,1}] (* G. C. Greubel, Oct 23 2019 *)
-
Vec((1-4*x)/(1-5*x-x^2) +O('x^30)) \\ _G. C. Greubel, Dec 19 2017
-
def A015449_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-4*x)/(1-5*x-x^2)).list()
A015449_list(30) # G. C. Greubel, Oct 23 2019
A164549
a(n) = 4*a(n-1) + 2*a(n-2) for n > 1; a(0) = 1, a(1) = 6.
Original entry on oeis.org
1, 6, 26, 116, 516, 2296, 10216, 45456, 202256, 899936, 4004256, 17816896, 79276096, 352738176, 1569504896, 6983495936, 31072993536, 138258966016, 615181851136, 2737245336576, 12179345048576, 54191870867456
Offset: 0
-
[ n le 2 select 5*n-4 else 4*Self(n-1)+2*Self(n-2): n in [1..22] ];
-
LinearRecurrence[{4,2},{1,6},30] (* Harvey P. Dale, Mar 16 2013 *)
CoefficientList[Series[(1 +2x)/(1 -4x -2x^2), {x, 0, 24}], x] (* Michael De Vlieger, Aug 02 2016 *)
-
Vec((1+2*x)/(1-4*x-2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016
-
[(i*sqrt(2))^n*(chebyshev_U(n, -i*sqrt(2)) - sqrt(2)*i*chebyshev_U(n-1, -i*sqrt(2))) for n in (0..30)] # G. C. Greubel, Jul 16 2021
A196472
a(1)=1; a(n) = floor((3 + sqrt(21))*a(n-1)/2) for n > 1.
Original entry on oeis.org
1, 3, 11, 41, 155, 587, 2225, 8435, 31979, 121241, 459659, 1742699, 6607073, 25049315, 94969163, 360055433, 1365073787, 5175387659, 19621384337, 74390315987, 282035100971, 1069276250873, 4053934055531, 15369630919211, 58270694924225, 220920977530307, 837575017363595
Offset: 1
-
I:=[1,3,11]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 05 2011
-
With[{c=(3+Sqrt[21])/2},NestList[Floor[c*#]&,1,30]] (* Harvey P. Dale, Apr 23 2014 *)
A103820
Whitney transform of 3^n.
Original entry on oeis.org
1, 4, 16, 61, 232, 880, 3337, 12652, 47968, 181861, 689488, 2614048, 9910609, 37573972, 142453744, 540083149, 2047610680, 7763081488, 29432076505, 111585473980, 423052651456, 1603914376309, 6080901083296, 23054446378816
Offset: 0
-
I:=[1,4,16]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 18 2017
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=3*a[n-1]+3*a[n-2]+1 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
-
Join[{a=0,b=1},Table[c=3*b+3*a+1;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
LinearRecurrence[{4, 0, -3}, {1, 4, 16}, 40] (* Vincenzo Librandi, Aug 18 2017 *)
A134927
a(0)=a(1)=1; a(n) = 3*(a(n-1) + a(n-2)).
Original entry on oeis.org
1, 1, 6, 21, 81, 306, 1161, 4401, 16686, 63261, 239841, 909306, 3447441, 13070241, 49553046, 187869861, 712268721, 2700415746, 10238053401, 38815407441, 147160382526, 557927369901, 2115263257281, 8019571881546, 30404505416481
Offset: 0
-
a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=3*a[n-1]+3*a[n-2] od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 14 2008
-
LinearRecurrence[{3, 3}, {1, 1}, 30]
-
a=[1,1];for(i=2,10,a=concat(a,3*a[#a]+3*a[#a-1]));a \\ Charles R Greathouse IV, Oct 04 2011
-
from sage.combinat.sloane_functions import recur_gen2
it = recur_gen2(1,1,3,3)
[next(it) for i in range(25)] # Zerinvary Lajos, Jun 25 2008
A238160
A skewed version of triangular array A029653.
Original entry on oeis.org
1, 0, 2, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 5, 2, 0, 0, 0, 4, 7, 2, 0, 0, 0, 1, 9, 9, 2, 0, 0, 0, 0, 5, 16, 11, 2, 0, 0, 0, 0, 1, 14, 25, 13, 2, 0, 0, 0, 0, 0, 6, 30, 36, 15, 2, 0, 0, 0, 0, 0, 1, 20, 55, 49, 17, 2, 0, 0, 0, 0, 0, 0, 7, 50, 91, 64, 19, 2, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
1;
0, 2;
0, 1, 2;
0, 0, 3, 2;
0, 0, 1, 5, 2;
0, 0, 0, 4, 7, 2;
0, 0, 0, 1, 9, 9, 2;
0, 0, 0, 0, 5, 16, 11, 2;
0, 0, 0, 0, 1, 14, 25, 13, 2;
0, 0, 0, 0, 0, 6, 30, 36, 15, 2;
0, 0, 0, 0, 0, 1, 20, 55, 49, 17, 2;
0, 0, 0, 0, 0, 0, 7, 50, 91, 64, 19, 2;
...
Showing 1-7 of 7 results.
Comments