A084057
a(n) = 2*a(n-1) + 4*a(n-2), a(0)=1, a(1)=1.
Original entry on oeis.org
1, 1, 6, 16, 56, 176, 576, 1856, 6016, 19456, 62976, 203776, 659456, 2134016, 6905856, 22347776, 72318976, 234029056, 757334016, 2450784256, 7930904576, 25664946176, 83053510656, 268766806016, 869747654656, 2814562533376, 9108115685376, 29474481504256
Offset: 0
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
The following sequences (and others) belong to the same family:
A001333,
A000129,
A026150,
A002605,
A046717,
A015518,
A084057,
A063727,
A002533,
A002532,
A083098,
A083099,
A083100,
A015519.
-
I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 31 2016
-
f[n_] := Simplify[((1 + Sqrt[5])^n + (1 - Sqrt[5])^n)/2]; Array[f, 28, 0] (* Or *)
LinearRecurrence[{2, 4}, {1, 1}, 28] (* Robert G. Wilson v, Sep 18 2013 *)
RecurrenceTable[{a[1] == 1, a[2] == 1, a[n] == 2 a[n-1] + 4 a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Jul 31 2016 *)
Table[2^(n-1) LucasL[n], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 19 2016 *)
-
lucas(n)=fibonacci(n-1)+fibonacci(n+1)
a(n)=lucas(n)/2*2^n \\ Charles R Greathouse IV, Sep 18 2013
-
from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,1,2,4, lambda n: 0); [next(it) for i in range(1,26)] # Zerinvary Lajos, Jul 09 2008
-
[lucas_number2(n,2,-4)/2 for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009
A090017
a(n) = 4*a(n-1) + 2*a(n-2) for n>1, a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 4, 18, 80, 356, 1584, 7048, 31360, 139536, 620864, 2762528, 12291840, 54692416, 243353344, 1082798208, 4817899520, 21437194496, 95384577024, 424412697088, 1888419942400, 8402505163776, 37386860539904, 166352452487168
Offset: 0
-
I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 12 2011
-
a[n_Integer] := (-I Sqrt[2])^(n - 1) ChebyshevU[ n - 1, I Sqrt[2] ]
a[n_]:=(MatrixPower[{{1,5},{1,3}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
t={0,1};Do[AppendTo[t,4*t[[-1]]+2*t[[-2]]],{n,2,23}];t (* or *) LinearRecurrence[{4,2},{0,1},24] (* Indranil Ghosh, Feb 21 2017 *)
-
Vec(x/(1-4*x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Oct 12 2011
-
[lucas_number1(n, 4, -2) for n in range(0, 23)] # Zerinvary Lajos, Apr 23 2009
A015449
Expansion of (1-4*x)/(1-5*x-x^2).
Original entry on oeis.org
1, 1, 6, 31, 161, 836, 4341, 22541, 117046, 607771, 3155901, 16387276, 85092281, 441848681, 2294335686, 11913527111, 61861971241, 321223383316, 1667978887821, 8661117822421, 44973567999926, 233528957822051
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Joerg Arndt, Matters Computational (The Fxtbook)
- Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae (2023). See p. 16.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (5,1).
-
a:=[1,1];; for n in [3..30] do a[n]:=5*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
-
[n le 2 select 1 else 5*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 06 2012
-
a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=5*a[n-1]+a[n-2] od: seq(a[n], n=0..21); # Zerinvary Lajos, Jul 26 2006
-
Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{1,5},#]}]&, {1,1},40]][[1]] (* Harvey P. Dale, Mar 23 2011 *)
LinearRecurrence[{5,1}, {1,1}, 30] (* Vincenzo Librandi, Nov 06 2012 *)
CoefficientList[Series[(1-4*x)/(1-5*x-x^2), {x,0,30}], x] (* G. C. Greubel, Dec 19 2017 *)
Sum[Fibonacci[Range[30] +k-2, 5], {k,0,1}] (* G. C. Greubel, Oct 23 2019 *)
-
Vec((1-4*x)/(1-5*x-x^2) +O('x^30)) \\ _G. C. Greubel, Dec 19 2017
-
def A015449_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-4*x)/(1-5*x-x^2)).list()
A015449_list(30) # G. C. Greubel, Oct 23 2019
A123011
a(n) = 2*a(n-1) + 5*a(n-2) for n > 1; a(0) = 1, a(1) = 5.
Original entry on oeis.org
1, 5, 15, 55, 185, 645, 2215, 7655, 26385, 91045, 314015, 1083255, 3736585, 12889445, 44461815, 153370855, 529050785, 1824955845, 6295165615, 21715110455, 74906048985, 258387650245, 891305545415, 3074549342055
Offset: 0
-
[ n le 2 select 4*n-3 else 2*Self(n-1)+5*Self(n-2): n in [1..24] ]; // Klaus Brockhaus, Aug 15 2009
-
LinearRecurrence[{2,5}, {1,5}, 31] (* G. C. Greubel, Jul 13 2021 *)
-
[1]+[(sqrt(5)*i)^(n-1)*(sqrt(5)*i*chebyshev_U(n, -i/sqrt(5)) + 3*chebyshev_U(n-1, -i/sqrt(5))) for n in (1..30)] # G. C. Greubel, Jul 13 2021
A154235
a(n) = ( (4 + sqrt(6))^n - (4 - sqrt(6))^n )/(2*sqrt(6)).
Original entry on oeis.org
1, 8, 54, 352, 2276, 14688, 94744, 611072, 3941136, 25418368, 163935584, 1057300992, 6819052096, 43979406848, 283644733824, 1829363802112, 11798463078656, 76094066608128, 490767902078464, 3165202550546432
Offset: 1
Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009
-
a:=[1,8];; for n in [3..30] do a[n]:=8*a[n-1]-10*a[n-2]; od; a; # G. C. Greubel, May 21 2019
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-6); S:=[ ((4+r)^n-(4-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
-
LinearRecurrence[{8, -10}, {1, 8}, 30] (* or *) Table[Simplify[((4 + Sqrt[6])^n -(4-Sqrt[6])^n)/(2*Sqrt[6])], {n, 30}] (* G. C. Greubel, Sep 06 2016 *)
-
a(n)=([0,1; -10,8]^(n-1)*[1;8])[1,1] \\ Charles R Greathouse IV, Sep 07 2016
-
my(x='x+O('x^30)); Vec(x/(1-8*x+10*x^2)) \\ G. C. Greubel, May 21 2019
-
[lucas_number1(n,8,10) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
A164550
a(n) = 6*a(n-1) - 3*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
Original entry on oeis.org
1, 7, 39, 213, 1161, 6327, 34479, 187893, 1023921, 5579847, 30407319, 165704373, 903004281, 4920912567, 26816462559, 146136037653, 796366838241, 4339792916487, 23649656984199, 128878563155733, 702322407981801
Offset: 0
-
[ n le 2 select 6*n-5 else 6*Self(n-1)-3*Self(n-2): n in [1..21] ];
-
LinearRecurrence[{6,-3}, {1,7}, 31] (* G. C. Greubel, Jul 16 2021 *)
-
[3^((n-1)/2)*(sqrt(3)*chebyshev_U(n, sqrt(3)) + chebyshev_U(n-1, sqrt(3))) for n in (0..30)] # G. C. Greubel, Jul 16 2021
A268409
a(n) = 4*a(n - 1) + 2*a(n - 2) for n>1, a(0)=3, a(1)=5.
Original entry on oeis.org
3, 5, 26, 114, 508, 2260, 10056, 44744, 199088, 885840, 3941536, 17537824, 78034368, 347213120, 1544921216, 6874111104, 30586286848, 136093369600, 605546052096, 2694370947584, 11988575894528, 53343045473280, 237349333682176, 1056083425675264
Offset: 0
-
[n le 2 select 2*n+1 else 4*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 04 2016
-
RecurrenceTable[{a[0] == 3, a[1] == 5, a[n] == 4 a[n - 1] + 2 a[n - 2]}, a, {n, 23}]
LinearRecurrence[{4, 2}, {3, 5}, 24]
Table[((18 + Sqrt[6]) (2 - Sqrt[6])^n - (Sqrt[6] - 18) (2 + Sqrt[6])^n)/12, {n, 0, 23}]
-
Vec((3 - 7*x)/(1 - 4*x - 2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016
Showing 1-7 of 7 results.
Comments