cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A164532 a(n) = 6*a(n-2) for n > 2; a(1) = 1, a(2) = 4.

Original entry on oeis.org

1, 4, 6, 24, 36, 144, 216, 864, 1296, 5184, 7776, 31104, 46656, 186624, 279936, 1119744, 1679616, 6718464, 10077696, 40310784, 60466176, 241864704, 362797056, 1451188224, 2176782336, 8707129344, 13060694016, 52242776064, 78364164096
Offset: 1

Views

Author

Klaus Brockhaus, Aug 15 2009

Keywords

Comments

Interleaving of A000400 and A067411 without initial term 1.
Binomial transform is apparently A123011. Fourth binomial transform is A154235.

Crossrefs

Cf. A000400 (powers of 6), A067411, A123011, A154235.

Programs

  • Magma
    [ n le 2 select 3*n-2 else 6*Self(n-2): n in [1..29] ];
    
  • Mathematica
    LinearRecurrence[{0,6}, {1,4}, 40] (* G. C. Greubel, Jul 16 2021 *)
  • Sage
    [((1 - (-1)^n)*sqrt(6)/2 + 2*(1 + (-1)^n))*6^(n/2 -1) for n in (1..40)] # G. C. Greubel, Jul 16 2021

Formula

a(n) = (5 - (-1)^n)*6^(1/4*(2*n - 5 + (-1)^n)).
G.f.: x*(1+4*x)/(1-6*x^2).
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = ((1-(-1)^n)*sqrt(6)/2 + 2*(1+(-1)^n))*6^(n/2 -1). - G. C. Greubel, Jul 16 2021

A164550 a(n) = 6*a(n-1) - 3*a(n-2) for n > 1; a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 39, 213, 1161, 6327, 34479, 187893, 1023921, 5579847, 30407319, 165704373, 903004281, 4920912567, 26816462559, 146136037653, 796366838241, 4339792916487, 23649656984199, 128878563155733, 702322407981801
Offset: 0

Views

Author

Klaus Brockhaus, Aug 15 2009

Keywords

Comments

Binomial transform of A164549.
Inverse binomial transform of A154235.

Crossrefs

Programs

  • Magma
    [ n le 2 select 6*n-5 else 6*Self(n-1)-3*Self(n-2): n in [1..21] ];
    
  • Mathematica
    LinearRecurrence[{6,-3}, {1,7}, 31] (* G. C. Greubel, Jul 16 2021 *)
  • Sage
    [3^((n-1)/2)*(sqrt(3)*chebyshev_U(n, sqrt(3)) + chebyshev_U(n-1, sqrt(3))) for n in (0..30)] # G. C. Greubel, Jul 16 2021

Formula

a(n) = ((3+2*sqrt(6))*(3+sqrt(6))^n + (3-2*sqrt(6))*(3-sqrt(6))^n)/6.
G.f.: (1+x)/(1-6*x+3*x^2).
a(n) = 3^((n-1)/2)*(sqrt(3)*ChebyshevU(n, sqrt(3)) + ChebyshevU(n-1, sqrt(3))). - G. C. Greubel, Jul 16 2021

A164551 a(n) = 10*a(n-1)-19*a(n-2) for n > 1; a(0) = 1, a(1) = 9.

Original entry on oeis.org

1, 9, 71, 539, 4041, 30169, 224911, 1675899, 12485681, 93014729, 692919351, 5161913659, 38453668921, 286460329689, 2133983587391, 15897089609819, 118425207937761, 882207376791049, 6571994817093031, 48958008011900379
Offset: 0

Views

Author

Klaus Brockhaus, Aug 15 2009

Keywords

Comments

Binomial transform of A154235. Inverse binomial transform of A164552.

Crossrefs

Programs

  • Magma
    [ n le 2 select 8*n-7 else 10*Self(n-1)-19*Self(n-2): n in [1..20] ];
  • Mathematica
    LinearRecurrence[{10,-19},{1,9},30] (* Harvey P. Dale, Dec 26 2015 *)

Formula

a(n) = ((3+2*sqrt(6))*(5+sqrt(6))^n+(3-2*sqrt(6))*(5-sqrt(6))^n)/6.
G.f.: (1-x)/(1-10*x+19*x^2).
Showing 1-4 of 4 results.