cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055314 Triangle T(n,k) read by rows: number of labeled trees with n nodes and k leaves, n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 3, 0, 12, 4, 0, 60, 60, 5, 0, 360, 720, 210, 6, 0, 2520, 8400, 5250, 630, 7, 0, 20160, 100800, 109200, 30240, 1736, 8, 0, 181440, 1270080, 2116800, 1058400, 151704, 4536, 9, 0, 1814400, 16934400, 40219200, 31752000, 8573040, 695520, 11430, 10, 0
Offset: 2

Views

Author

Christian G. Bower, May 11 2000

Keywords

Examples

			Triangle T(n,k) begins:
     1;
     3,    0;
    12,    4,    0;
    60,   60,    5,   0;
   360,  720,  210,   6, 0;
  2520, 8400, 5250, 630, 7, 0;
  ...
		

References

  • Moon, J. W. Various proofs of Cayley's formula for counting trees. 1967 A seminar on Graph Theory pp. 70--78 Holt, Rinehart and Winston, New York; MR0214515 (35 #5365). - From N. J. A. Sloane, Jun 07 2012
  • Renyi, Alfred. Some remarks on the theory of trees. Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 1959 73--85. MR0115938 (22 #6735). - From N. J. A. Sloane, Jun 07 2012
  • D. Stanton and D. White, Constructive Combinatorics, Springer, 1986; see p. 67.

Crossrefs

Cf. A000272.
Row sums give A000272. Columns 2 through 12: A001710, A055315-A055324.

Programs

  • Maple
    T := (n,k) -> binomial(n+1,k)*add( binomial(n+1-k,i)*(-1)^(n+1-k-i)*i^(n-1), i=0..n+1-k);
    # The following version gives the triangle for any n>=1, k>=1, based on the Harary et al. (1969) paper - N. J. A. Sloane, Jun 07 2012
    with(combinat);
    R:=proc(n,k)
    if n=1 then if k=1 then RETURN(1) else RETURN(0); fi
        elif (n=2 and k=2) then RETURN(1)
        elif (n=2 and k>2) then RETURN(0)
        else stirling2(n-2,n-k)*n!/k!;
        fi;
    end;
  • Mathematica
    Table[Table[Binomial[n,k] Sum[(-1)^j Binomial[n-k,j] (n-k-j)^(n-2),{j,0,n-k}],{k,2,n-1}],{n,2,10}]//Grid (* Geoffrey Critzer, Nov 12 2011 *)
    Table[(n!/k!)*StirlingS2[n - 2, n - k], {n, 2, 7}, {k, 2, n}]//Flatten (* G. C. Greubel, May 17 2017 *)
  • Maxima
    A055314(n,k) := block(
            n!/k!*stirling2(n-2,n-k)
    )$
    for n : 2 thru 10 do
            for k : 2 thru n do
                    print(A055314(n,k)," ") ; /* R. J. Mathar, Mar 06 2012 */
    
  • PARI
    for(n=2,20, for(k=2,n, print1((n!/k!)*stirling(n-2, n-k, 2), ", "))) \\ G. C. Greubel, May 17 2017

Formula

E.g.f.: A(x, y)=(1-x+x*y)*B(x, y)-B(x, y)^2/2. B(x, y): e.g.f. of A055302.
T(n, k) = binomial(n+1, k)*Sum( binomial(n+1-k, i)*(-1)^(n+1-k-i)*i^(n-1), i=0..n+1-k).
T(n, k) = (n!/k!)*Stirling2(n-2, n-k). - Vladeta Jovovic, Jan 28 2004