cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A055327 Triangle of rooted identity trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 6, 5, 1, 9, 13, 2, 1, 12, 28, 11, 1, 16, 53, 40, 3, 1, 20, 91, 109, 26, 1, 25, 146, 254, 116, 6, 1, 30, 223, 524, 387, 61, 1, 36, 326, 998, 1068, 329, 12, 1, 42, 461, 1774, 2587, 1289, 145, 1, 49, 634, 2995, 5678, 4133, 911, 25, 1, 56
Offset: 1

Views

Author

Christian G. Bower, May 12 2000

Keywords

Comments

Row lengths are 1,1,1,2,2,3,3,4,4,5,5,6,6,...

Examples

			Triangle begins:
1;
1;
1;
1,  1;
1,  2;
1,  4,  1;
1,  6,  5;
1,  9, 13,  2;
1, 12, 28, 11;
1, 16, 53, 40, 3;
...
From _Joerg Arndt_, Aug 18 2014: (Start)
The identity trees with n=6 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are:
:
:     1:  [ 0 1 2 3 4 5 ]   1
:  O--o--o--o--o--o
:
:     2:  [ 0 1 2 3 4 3 ]   2
:  O--o--o--o--o
:        .--o
:
:     3:  [ 0 1 2 3 4 2 ]   2
:  O--o--o--o--o
:     .--o
:
:     4:  [ 0 1 2 3 4 1 ]   2
:  O--o--o--o--o
:  .--o
:
:     5:  [ 0 1 2 3 2 1 ]   3
:  O--o--o--o
:     .--o
:  .--o
:
:     6:  [ 0 1 2 3 1 2 ]   2
:  O--o--o--o
:  .--o--o
:
This gives [1, 4, 1], row n=6 of the triangle.
(End)
		

Crossrefs

Row sums give A004111.
Columns 2 to 8: A002620(n-2), A055328, A055329, A055330, A055331, A055332, A055333.
A regular version is A301342.
Cf. A055334.

Programs

  • PARI
    WeighMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, (-1)^(i-1)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    A(n)={my(v=[y]); for(n=2, n, v=concat([y], WeighMT(v))); apply(p->Vecrev(p/y), v)}
    { my(T=A(15)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 28 2018

Formula

G.f. satisfies A(x,y) = x*y + x*WEIGH(A(x,y)) - x. Shifts up under WEIGH transform.

A055335 Number of asymmetric (identity) trees with n nodes and 4 leaves.

Original entry on oeis.org

1, 3, 8, 14, 25, 40, 62, 89, 127, 173, 233, 304, 393, 497, 624, 769, 942, 1139, 1369, 1627, 1925, 2257, 2635, 3053, 3524, 4042, 4621, 5253, 5954, 6717, 7557, 8466, 9462, 10536, 11706, 12963, 14326, 15786, 17363, 19046, 20857, 22786, 24854
Offset: 9

Views

Author

Christian G. Bower, May 12 2000

Keywords

Crossrefs

Column 4 of A055334.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( x^9*(1+x+2*x^2-x^3)/((1-x)*(&*[1-x^j: j in [1..4]])) )); // G. C. Greubel, Nov 10 2023
    
  • Mathematica
    Drop[CoefficientList[Series[x^9*(1+x+2*x^2-x^3)/((1-x)*Product[1-x^j, {j,4}]), {x,0,50}], x], 9] (* G. C. Greubel, Nov 10 2023 *)
  • SageMath
    def A055335_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^9*(1+x+2*x^2-x^3)/((1-x)*product(1-x^j for j in range(1,5))) ).list()
    a=A055335_list(50); a[9:] # G. C. Greubel, Nov 10 2023

Formula

G.f.: x^9*(1+x+2*x^2-x^3)/((1-x)^2*(1-x^2)^2*(1+x^2)*(1-x^3)).
a(n) = (-225 -762*n +516*n^2 -100*n^3 +6*n^4)/1152 -(3/128)*(-1)^n*(2*n -11) -(1/16)*(2 -(-1)^n)*(-1)^binomial(n,2) -(1/9)*ChebyshevU(n-1, -1/2) + [n=1]. - G. C. Greubel, Nov 10 2023

A055339 Number of asymmetric (identity) trees with n nodes and 8 leaves.

Original entry on oeis.org

1, 27, 172, 798, 2866, 8879, 24308, 60812, 140884, 306890, 633610, 1250265, 2370223, 4339340, 7699607, 13286899, 22357092, 36771118, 59229576, 93604439, 145353364, 222087798, 334273110, 496164369, 726946124, 1052222818
Offset: 16

Views

Author

Christian G. Bower, May 12 2000

Keywords

Crossrefs

Column 8 of A055334.

A055336 Number of asymmetric (identity) trees with n nodes and 5 leaves.

Original entry on oeis.org

3, 10, 29, 65, 135, 252, 445, 739, 1184, 1821, 2726, 3963, 5643, 7861, 10770, 14504, 19269, 25248, 32710, 41896, 53152, 66788, 83238, 102895, 126295, 153927, 186443, 224442, 268710, 319971, 379160, 447142, 525021, 613821, 714831
Offset: 11

Views

Author

Christian G. Bower, May 12 2000

Keywords

Crossrefs

Column 5 of A055334.

A055337 Number of asymmetric (identity) trees with n nodes and 6 leaves.

Original entry on oeis.org

6, 25, 90, 244, 591, 1273, 2566, 4822, 8654, 14836, 24566, 39352, 61389, 93357, 139008, 202865, 290976, 410584, 571094, 783583, 1062145, 1423226, 1887252, 2477916, 3224154, 4159173, 5323025, 6761359, 8528427, 10685767, 13305718
Offset: 13

Views

Author

Christian G. Bower, May 12 2000

Keywords

Crossrefs

Column 6 of A055334.

A055338 Number of asymmetric (identity) trees with n nodes and 7 leaves.

Original entry on oeis.org

1, 13, 69, 276, 868, 2380, 5822, 13110, 27509, 54583, 103126, 187035, 327121, 554450, 913611, 1468364, 2307096, 3551916, 5367406, 7974550, 11664238, 16817964, 23927818, 33626390, 46715627, 64208789, 87371118, 117777552
Offset: 14

Views

Author

Christian G. Bower, May 12 2000

Keywords

Crossrefs

Column 7 of A055334.
Showing 1-6 of 6 results.