A055461 Square decrescendo subsequences: triangle T(n,k) = (n-k)^2, n >= 1, 0 <= k < n.
1, 4, 1, 9, 4, 1, 16, 9, 4, 1, 25, 16, 9, 4, 1, 36, 25, 16, 9, 4, 1, 49, 36, 25, 16, 9, 4, 1, 64, 49, 36, 25, 16, 9, 4, 1, 81, 64, 49, 36, 25, 16, 9, 4, 1, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 144, 121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1
Offset: 1
Examples
From _Omar E. Pol_, Jan 26 2014: (Start) Triangle begins: 1; 4, 1; 9, 4, 1; 16, 9, 4, 1; 25, 16, 9, 4, 1; 36, 25, 16, 9, 4, 1; 49, 36, 25, 16, 9, 4, 1; 64, 49, 36, 25, 16, 9, 4, 1; 81, 64, 49, 36, 25, 16, 9, 4, 1; 100, 81, 64, 49, 36, 25, 16, 9, 4, 1; ... For n = 7 the row sum is 49 + 36 + 25 + 16 + 9 + 4 + 1 = A000330(7) = 140. The alternating row sum is 49 - 36 + 25 - 16 + 9 - 4 + 1 = A000217(7) = 28. (End)
Links
- Robert Israel, Rows n = 1..141, flattened
Crossrefs
Programs
-
Magma
[(n-k)^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Jan 31 2024
-
Maple
for n from 1 to 10 do seq((n-k)^2, k=0..n-1) od; # Robert Israel, Jan 18 2018
-
Mathematica
Table[Range[n,1,-1]^2,{n,20}]//Flatten (* Harvey P. Dale, Apr 17 2020 *)
-
SageMath
flatten([[(n-k)^2 for k in range(n)] for n in range(1,16)]) # G. C. Greubel, Jan 31 2024
Formula
a(n) = A004736(n)^2.
Sum_{k=0..n-1} T(n, k) = A000330(n) (row sums). - Michel Marcus, Dec 31 2012
G.f. as triangle: x*(1+x)/((1-x*y)*(1-x)^3). - Robert Israel, Jan 18 2018
Sum_{k=0..n-1} (-1)^k*T(n, k) = A000217(n) (alternating row sums). - Omar E. Pol, Jan 24 2014
From G. C. Greubel, Jan 31 2024: (Start)
T(2*n-1, n-1) = A000290(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000292(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A194274(n).
Sum_{k=0..floor(n/2)} T(n, k) = A129371(n). (End)