cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055461 Square decrescendo subsequences: triangle T(n,k) = (n-k)^2, n >= 1, 0 <= k < n.

Original entry on oeis.org

1, 4, 1, 9, 4, 1, 16, 9, 4, 1, 25, 16, 9, 4, 1, 36, 25, 16, 9, 4, 1, 49, 36, 25, 16, 9, 4, 1, 64, 49, 36, 25, 16, 9, 4, 1, 81, 64, 49, 36, 25, 16, 9, 4, 1, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 144, 121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1
Offset: 1

Views

Author

Henry Bottomley, Jun 26 2000

Keywords

Examples

			From _Omar E. Pol_, Jan 26 2014: (Start)
Triangle begins:
    1;
    4,  1;
    9,  4,  1;
   16,  9,  4,  1;
   25, 16,  9,  4,  1;
   36, 25, 16,  9,  4,  1;
   49, 36, 25, 16,  9,  4,  1;
   64, 49, 36, 25, 16,  9,  4,  1;
   81, 64, 49, 36, 25, 16,  9,  4,  1;
  100, 81, 64, 49, 36, 25, 16,  9,  4,  1;
  ...
For n = 7 the row sum is 49 + 36 + 25 + 16 + 9 + 4 + 1 = A000330(7) = 140.
The alternating row sum is 49 - 36 + 25 - 16 + 9 - 4 + 1 = A000217(7) = 28.
(End)
		

Crossrefs

Cf. A000217 (alternating row sums), A000330 (row sums).

Programs

  • Magma
    [(n-k)^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Jan 31 2024
    
  • Maple
    for n from 1 to 10 do
      seq((n-k)^2, k=0..n-1)
    od; # Robert Israel, Jan 18 2018
  • Mathematica
    Table[Range[n,1,-1]^2,{n,20}]//Flatten (* Harvey P. Dale, Apr 17 2020 *)
  • SageMath
    flatten([[(n-k)^2 for k in range(n)] for n in range(1,16)]) # G. C. Greubel, Jan 31 2024

Formula

a(n) = A004736(n)^2.
Sum_{k=0..n-1} T(n, k) = A000330(n) (row sums). - Michel Marcus, Dec 31 2012
G.f. as triangle: x*(1+x)/((1-x*y)*(1-x)^3). - Robert Israel, Jan 18 2018
Sum_{k=0..n-1} (-1)^k*T(n, k) = A000217(n) (alternating row sums). - Omar E. Pol, Jan 24 2014
From G. C. Greubel, Jan 31 2024: (Start)
T(2*n-1, n-1) = A000290(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000292(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A194274(n).
Sum_{k=0..floor(n/2)} T(n, k) = A129371(n). (End)