A055481 Numbers k for which there exists some m such that k = Sum_{i=1..1+floor(log_10(k))} binomial(m, d_i), where d_i is the i-th digit of k.
1, 10, 18, 21, 72, 100, 101, 111, 134, 231, 246, 505, 682, 1000, 1010, 1100, 1122, 2210, 3103, 4006, 6008, 10000, 10001, 10012, 11101, 15453, 20101, 29358, 34698, 56576, 84304, 100000, 100010, 100011, 100100, 100101, 100110, 100303, 101000, 101001, 101010
Offset: 1
Examples
3103 = C(22, 3) + C(22, 1) + C(22, 0) + C(22, 3). C(k, 1) + C(k, 1) + C(k, 1) + C(k, 0) + C(k, 0) + C(k, 0) = 3k + 3 so all 6-digit numbers with 3 ones and 3 zeros are in the sequence. - _David A. Corneth_, Oct 30 2018
Links
- Giovanni Resta, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
ok[n_] := Block[{d = IntegerDigits@n, k=1, v, x}, If[ Max@d <= 3, False =!= Reduce[ Total@ Binomial[x, d] == n && x>0, x, Integers], While[(v = Total@ Binomial[k, d]) < n, k++]; v == n]]; Select[ Range[10^5], ok] (* Giovanni Resta, Oct 30 2018 *)
-
PARI
is(n) = my(d = digits(n)); for(i = 1, n, s = sum(j = 1, #d, binomial(i, d[j])); if(s >= n, return(s == n))) \\ David A. Corneth, Oct 30 2018
Extensions
a(31)-a(41) from Giovanni Resta, Oct 30 2018
Comments