cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055481 Numbers k for which there exists some m such that k = Sum_{i=1..1+floor(log_10(k))} binomial(m, d_i), where d_i is the i-th digit of k.

Original entry on oeis.org

1, 10, 18, 21, 72, 100, 101, 111, 134, 231, 246, 505, 682, 1000, 1010, 1100, 1122, 2210, 3103, 4006, 6008, 10000, 10001, 10012, 11101, 15453, 20101, 29358, 34698, 56576, 84304, 100000, 100010, 100011, 100100, 100101, 100110, 100303, 101000, 101001, 101010
Offset: 1

Views

Author

Erich Friedman, Jun 27 2000

Keywords

Comments

Contains numbers of the form 10^k, k >= 0 so the sequence is infinite. - David A. Corneth, Oct 30 2018

Examples

			3103 = C(22, 3) + C(22, 1) + C(22, 0) + C(22, 3).
C(k, 1) + C(k, 1) + C(k, 1) + C(k, 0) + C(k, 0) + C(k, 0) = 3k + 3 so all 6-digit numbers with 3 ones and 3 zeros are in the sequence. - _David A. Corneth_, Oct 30 2018
		

Crossrefs

Programs

  • Mathematica
    ok[n_] := Block[{d = IntegerDigits@n, k=1, v, x}, If[ Max@d <= 3, False =!= Reduce[ Total@ Binomial[x, d] == n && x>0, x, Integers], While[(v = Total@ Binomial[k, d]) < n, k++]; v == n]]; Select[ Range[10^5], ok] (* Giovanni Resta, Oct 30 2018 *)
  • PARI
    is(n) = my(d = digits(n)); for(i = 1, n, s = sum(j = 1, #d, binomial(i, d[j])); if(s >= n, return(s == n))) \\ David A. Corneth, Oct 30 2018

Extensions

a(31)-a(41) from Giovanni Resta, Oct 30 2018