A055487 Least m such that phi(m) = n!.
1, 3, 7, 35, 143, 779, 5183, 40723, 364087, 3632617, 39916801, 479045521, 6227180929, 87178882081, 1307676655073, 20922799053799, 355687465815361, 6402373865831809, 121645101106397521, 2432902011297772771, 51090942186005065121, 1124000727844660550281, 25852016739206547966721, 620448401734814833377121, 15511210043338862873694721, 403291461126645799820077057, 10888869450418352160768000001, 304888344611714964835479763201
Offset: 1
Keywords
References
- R. K. Guy, (1981): Unsolved problems In Number Theory, Springer - page 53.
- Tattersall, J., "Elementary Number Theory in Nine Chapters", Cambridge University Press, 2001, p. 162.
Links
- Max A. Alekseyev, Computing the Inverses, their Power Sums, and Extrema for Euler's Totient and Other Multiplicative Functions. Journal of Integer Sequences, Vol. 19 (2016), Article 16.5.2.
- P. Erdős and J. Lambek, Problem 4221, Amer. Math. Monthly, 55 (1948), 103.
Programs
-
Mathematica
Array[Block[{k = 1}, While[EulerPhi[k] != #, k++]; k] &[#!] &, 10] (* Michael De Vlieger, Jul 12 2018 *)
Extensions
More terms from Don Reble, Nov 05 2001
a(21)-a(28) from Max Alekseyev, Jul 09 2014
Comments