cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055487 Least m such that phi(m) = n!.

Original entry on oeis.org

1, 3, 7, 35, 143, 779, 5183, 40723, 364087, 3632617, 39916801, 479045521, 6227180929, 87178882081, 1307676655073, 20922799053799, 355687465815361, 6402373865831809, 121645101106397521, 2432902011297772771, 51090942186005065121, 1124000727844660550281, 25852016739206547966721, 620448401734814833377121, 15511210043338862873694721, 403291461126645799820077057, 10888869450418352160768000001, 304888344611714964835479763201
Offset: 1

Views

Author

Labos Elemer, Jun 28 2000

Keywords

Comments

Erdős believed (see Guy reference) that phi(x) = n! is solvable.
Factorial primes of the form p = A002981(m)! + 1 = k! + 1 give the smallest solutions for some m (like m = 1,2,3,11) as follows: phi(p) = p-1 = A002981(m)!.
According to Tattersall, in 1950 H. Gupta showed that phi(x) = n! is always solvable. - Joseph L. Pe, Oct 01 2002
A123476(n) is a solution to the equation phi(x)=n!. - T. D. Noe, Sep 27 2006
From M. F. Hasler, Oct 04 2009: (Start)
Conjecture: Unless n!+1 is prime (i.e., n in A002981), a(n)=pq where p is the least prime > sqrt(n!) such that (p-1) | n! and q=n!/(p-1)+1 is prime.
Probably "least prime > sqrt(n!)" can also be replaced by "largest prime <= ceiling(sqrt(n!))". The case "= ceiling(...)" occurs for n=5, sqrt(120) = 10.95..., p=11, q=13.
a(n) is the first element in row n of the table A165773, which lists all solutions to phi(x)=n!. Thus a(n) = A165773((Sum_{kA055506(k)) + 1). The last element of each row (i.e., the largest solution to phi(x)=n!) is given in A165774. (End)

References

  • R. K. Guy, (1981): Unsolved problems In Number Theory, Springer - page 53.
  • Tattersall, J., "Elementary Number Theory in Nine Chapters", Cambridge University Press, 2001, p. 162.

Crossrefs

Programs

  • Mathematica
    Array[Block[{k = 1}, While[EulerPhi[k] != #, k++]; k] &[#!] &, 10] (* Michael De Vlieger, Jul 12 2018 *)

Formula

a(n) = Min{m : phi(m) = n!} = Min{m : A000010(m) = A000142(n)}.

Extensions

More terms from Don Reble, Nov 05 2001
a(21)-a(28) from Max Alekseyev, Jul 09 2014