A055507 a(n) = Sum_{k=1..n} d(k)*d(n+1-k), where d(k) is number of positive divisors of k.
1, 4, 8, 14, 20, 28, 37, 44, 58, 64, 80, 86, 108, 108, 136, 134, 169, 160, 198, 192, 236, 216, 276, 246, 310, 288, 348, 310, 400, 344, 433, 396, 474, 408, 544, 450, 564, 512, 614, 522, 688, 560, 716, 638, 756, 636, 860, 676, 859, 772, 926, 758, 1016, 804, 1032
Offset: 1
Keywords
Examples
a(4) = d(1)*d(4) + d(2)*d(3) + d(3)*d(2) + d(4)*d(1) = 1*3 +2*2 +2*2 +3*1 = 14. 3 = 1*1+2*1 in 4 ways, so a(2)=4; 4 = 1*1+1*3 (4 ways) = 2*1+2*1 (4 ways), so a(3)=8; 5 = 4*1+1*1 (4 ways) = 2*2+1*1 (2 ways) + 3*1+2*1 (8 ways), so a(4) = 14. - _N. J. A. Sloane_, Jul 07 2012
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- George E. Andrews, Stacked lattice boxes, Ann. Comb. 3 (1999), 115-130. See D_{0,0}.
- A. E. Ingham, Some asymptotic formulae in the theory of numbers, Journal of the London Mathematical Society, Vol. s1-2, No. 3 (1927), pp. 202-208.
- Yoichi Motohashi, The binary additive divisor problem, Annales scientifiques de l'École Normale Supérieure, Sér. 4, 27 no. 5 (1994), p. 529-572.
- E. C. Titchmarsh, Some problems in the analytic theory of numbers, The Quarterly Journal of Mathematics 1 (1942): 129-152.
Programs
-
Maple
with(numtheory); A055507:=n->add(tau(j)*tau(n+1-j),j=1..n);
-
Mathematica
Table[Sum[DivisorSigma[0, k]*DivisorSigma[0, n + 1 - k], {k, 1, n}], {n, 1, 100}] (* Vaclav Kotesovec, Aug 08 2022 *)
-
PARI
a(n)=sum(k=1,n,numdiv(k)*numdiv(n+1-k)) \\ Charles R Greathouse IV, Oct 17 2012
-
Python
from sympy import divisor_count def A055507(n): return (sum(divisor_count(i+1)*divisor_count(n-i) for i in range(n>>1))<<1)+(divisor_count(n+1>>1)**2 if n&1 else 0) # Chai Wah Wu, Jul 26 2024
Formula
G.f.: Sum_{i >= 1, j >= 1} x^(i+j-1)/(1-x^i)/(1-x^j). - Vladeta Jovovic, Nov 11 2001
Working with an offset of 2, it appears that the o.g.f is equal to the Lambert series sum {n >= 2} A072031(n-1)*x^n/(1 - x^n). - Peter Bala, Dec 09 2014
Extensions
More terms from James Sellers, Jul 04 2000
Definition clarified by N. J. A. Sloane, Jul 07 2012
Comments