cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055585 Second column of triangle A055584.

Original entry on oeis.org

1, 6, 25, 88, 280, 832, 2352, 6400, 16896, 43520, 109824, 272384, 665600, 1605632, 3829760, 9043968, 21168128, 49152000, 113311744, 259522560, 590872576, 1337982976, 3014656000, 6761218048, 15099494400, 33587986432, 74440507392
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

Number of 132-avoiding permutations of [n+5] containing exactly three 123 patterns. - Emeric Deutsch, Jul 13 2001
If X_1,X_2,...,X_n are 2-blocks of a (2n+2)-set X then, for n>=1, a(n-1) is the number of (n+3)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
Convolution of A001792 with itself. - Philippe Deléham, Feb 21 2013

Examples

			a(1)=6 because 432516,432561,435126,452136,532146 and 632145 are the only 132-avoiding permutations of 123456, containing exactly three increasing subsequences of length 3.
		

Crossrefs

Cf. A055584, partial sums of A049612, n >= 1.

Programs

  • Mathematica
    Table[(1/3)*2^(n-3)*(n+1)*(n+3)*(n+8), {n,0,50}] (* G. C. Greubel, Aug 22 2015 *)
    LinearRecurrence[{8,-24,32,-16},{1,6,25,88},30] (* Harvey P. Dale, Nov 03 2017 *)
  • PARI
    Vec(((1-x)^2)/(1-2*x)^4 + O(x^30)) \\ Michel Marcus, Aug 22 2015

Formula

G.f.: (1-x)^2/(1-2*x)^4.
a(n) = A055584(n+1, 1). a(n) = sum(a(j), j=0..n-1)+A001793(n+1), n >= 1.
a(n) = 2^(n-3)(n+1)(n+3)(n+8)/3.
Preceded by 0, this is the binomial transform of the tetrahedral numbers A000292. - Carl Najafi, Sep 08 2011
E.g.f.: (1/6)*(2*x^3 + 15*x^2 + 24*x + 6)*exp(2*x). - G. C. Greubel, Aug 22 2015