A055585 Second column of triangle A055584.
1, 6, 25, 88, 280, 832, 2352, 6400, 16896, 43520, 109824, 272384, 665600, 1605632, 3829760, 9043968, 21168128, 49152000, 113311744, 259522560, 590872576, 1337982976, 3014656000, 6761218048, 15099494400, 33587986432, 74440507392
Offset: 0
Examples
a(1)=6 because 432516,432561,435126,452136,532146 and 632145 are the only 132-avoiding permutations of 123456, containing exactly three increasing subsequences of length 3.
Links
- Milan Janjic, Two Enumerative Functions
- M. Janjic, On a class of polynomials with integer coefficients, JIS 11 (2008) 08.5.2
- Pudwell, Lara; Scholten, Connor; Schrock, Tyler; Serrato, Alexa Noncontiguous pattern containment in binary trees, ISRN Comb. 2014, Article ID 316535, 8 p. (2014), Section 5.2.
- A. Robertson, H. S. Wilf and D. Zeilberger, Permutation patterns and continued fractions, Electr. J. Combin. 6, 1999, #R38.
- Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
Programs
-
Mathematica
Table[(1/3)*2^(n-3)*(n+1)*(n+3)*(n+8), {n,0,50}] (* G. C. Greubel, Aug 22 2015 *) LinearRecurrence[{8,-24,32,-16},{1,6,25,88},30] (* Harvey P. Dale, Nov 03 2017 *)
-
PARI
Vec(((1-x)^2)/(1-2*x)^4 + O(x^30)) \\ Michel Marcus, Aug 22 2015
Formula
G.f.: (1-x)^2/(1-2*x)^4.
a(n) = 2^(n-3)(n+1)(n+3)(n+8)/3.
Preceded by 0, this is the binomial transform of the tetrahedral numbers A000292. - Carl Najafi, Sep 08 2011
E.g.f.: (1/6)*(2*x^3 + 15*x^2 + 24*x + 6)*exp(2*x). - G. C. Greubel, Aug 22 2015
Comments