cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055599 Triangle T(n,k) read by rows, giving the number of n X n binary matrices with no zero rows or columns and with k=0..n^2 ones.

Original entry on oeis.org

0, 1, 0, 0, 2, 4, 1, 0, 0, 0, 6, 45, 90, 78, 36, 9, 1, 0, 0, 0, 0, 24, 432, 2248, 5776, 9066, 9696, 7480, 4272, 1812, 560, 120, 16, 1, 0, 0, 0, 0, 0, 120, 4200, 43000, 222925, 727375, 1674840, 2913100, 3995100, 4441200, 4073100, 3114140, 1994550
Offset: 1

Views

Author

Vladeta Jovovic, Jun 01 2000

Keywords

Comments

Rows also give the coefficients of the edge cover polynomials of the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Apr 24 2017

Examples

			For m=n=3 we get T(3,k)=C(9,k)-6*C(6,k)+9*C(4,k)+6*C(3,k)-18*C(2,k)+9*C(1,k)-C(0,k) giving the batch [0,0,0,6,45,90,78,36,9,1].
Triangle begins:
0, 1,
0, 0, 2, 4, 1,
0, 0, 0, 6, 45, 90, 78, 36, 9, 1,
0, 0, 0, 0, 24, 432, 2248, 5776, 9066, 9696, 7480, 4272, 1812, 560, 120, 16, 1,
...
		

Crossrefs

Cf. A048291 (row sums).

Programs

  • Mathematica
    row[n_] := Sum[(-1)^(n-k) Binomial[n, k] ((1+x)^k - 1)^n, {k, 0, n}] + O[x]^(n^2+1) // CoefficientList[#, x]&;
    Table[row[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Nov 06 2018 *)

Formula

Number of m X n binary matrices with no zero rows or columns and with k=0..m*n ones is Sum_{i=0..n} (-1)^i*C(n, i)*a(m, n-i, k) where a(m, n, k)=Sum_{i=0..m} (-1)^i*C(m, i)*C((m-i)*n, k).
G.f. for n-th row: Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*((1+x)^k-1)^n. - Vladeta Jovovic, Apr 04 2003
E.g.f.: Sum(((1+y)^n-1)^n*exp((1-(1+y)^n)*x)*x^n/n!,n=0..infinity). - Vladeta Jovovic, Feb 24 2008