A049311
Number of (0,1) matrices with n ones and no zero rows or columns, up to row and column permutations.
Original entry on oeis.org
1, 3, 6, 16, 34, 90, 211, 558, 1430, 3908, 10725, 30825, 90156, 273234, 848355, 2714399, 8909057, 30042866, 103859678, 368075596, 1335537312, 4958599228, 18820993913, 72980867400, 288885080660, 1166541823566, 4802259167367, 20141650236664
Offset: 1
E.g. a(2) = 3: two ones in same row, two ones in same column, or neither.
a(3) = 6 is coefficient of x^3 in (1/36)*((1 + x)^9 + 6*(1 + x)^3*(1 + x^2)^3 + 8*(1 + x^3)^3 + 9*(1 + x)*(1 + x^2)^4 + 12*(1 + x^3)*(1 + x^6))=1 + x + 3*x^2 + 6*x^3 + 7*x^4 + 7*x^5 + 6*x^6 + 3*x^7 + x^8 + x^9.
There are a(3) = 6 binary matrices with 3 ones, with no zero rows or columns, up to row and column permutation:
[1 0 0] [1 1 0] [1 0] [1 1] [1 1 1] [1]
[0 1 0] [0 0 1] [1 0] [1 0] ....... [1].
[0 0 1] ....... [0 1] ............. [1]
Non-isomorphic representatives of the a(3)=6 set multipartitions are: ((123)), ((1)(23)), ((2)(12)), ((1)(1)(1)), ((1)(2)(2)), ((1)(2)(3)). - _Gus Wiseman_, Mar 17 2017
- Aliaksandr Siarhei, Table of n, a(n) for n = 1..102
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Peter J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
- Peter J. Cameron, Problems on Permutation Groups, see Problem 3
- Index entries for sequences related to binary matrices.
Cf.
A049312,
A048194,
A028657,
A055192,
A055599,
A052371,
A052370,
A053304,
A053305,
A007716,
A002724.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 16 2023
A048291
Number of {0,1} n X n matrices with no zero rows or columns.
Original entry on oeis.org
1, 1, 7, 265, 41503, 24997921, 57366997447, 505874809287625, 17343602252913832063, 2334958727565749108488321, 1243237913592275536716800402887, 2630119877024657776969635243647463625, 22170632855360952977731028744522744983195423
Offset: 0
Joe Keane (jgk(AT)jgk.org)
a(2) = 7: |01| |01| |10| |10| |11| |11| |11|
|10| |11| |01| |11| |01| |10| |11|.
- Brendan McKay, Posting to sci.math.research, Jun 14 1999.
- T. D. Noe, Table of n, a(n) for n = 0..32
- H. Cheballah, S. Giraudo, and R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013.
- David Dolžan and Gabriel Verret, The automorphism group of the zero-divisor digraph of matrices over an antiring, arXiv:1908.04614 [math.AC], 2019.
- R. J. Mathar, The number of nXm matrices with at most k 1's in each row or column, (2014).
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Stefan Schwarz, The semigroup of fully indecomposable relations and Hall relations, Czechoslovak Mathematical Journal, 23 (1973), 151-163.
- R. Tauraso, Edge cover time for regular graphs, JIS 11 (2008) 08.4.4.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Edge Cover.
-
seq(add((-1)^(n+k)*binomial(n, k)*(2^k-1)^n, k=0..n), n=0..15); # Robert FERREOL, Mar 10 2017
-
Flatten[{1,Table[Sum[Binomial[n,k]*(-1)^k*(2^(n-k)-1)^n,{k,0,n}],{n,1,15}]}] (* Vaclav Kotesovec, Jul 02 2014 *)
-
a(n)=sum(k=0,n,binomial(n,k)*(-1)^k*(2^(n-k)-1)^n)
-
import math
f = math.factorial
def A048291(n): return sum([(f(n)/f(s)/f(n - s))*(-1)**s*(2**(n - s) - 1)**n for s in range(0, n+1)]) # Indranil Ghosh, Mar 14 2017
A104601
Triangle T(r,n) read by rows: number of n X n (0,1)-matrices with exactly r entries equal to 1 and no zero row or columns.
Original entry on oeis.org
1, 0, 2, 0, 4, 6, 0, 1, 45, 24, 0, 0, 90, 432, 120, 0, 0, 78, 2248, 4200, 720, 0, 0, 36, 5776, 43000, 43200, 5040, 0, 0, 9, 9066, 222925, 755100, 476280, 40320, 0, 0, 1, 9696, 727375, 6700500, 13003620, 5644800, 362880, 0, 0, 0, 7480, 1674840
Offset: 1
1
0,2
0,4,6
0,1,45,24
0,0,90,432,120
0,0,78,2248,4200,720
0,0,36,5776,43000,43200,5040
0,0,9,9066,222925,755100,476280,40320
0,0,1,9696,727375,6700500,13003620,5644800,362880
0,0,0,7480,1674840,37638036,179494350,226262400,71850240,3628800
-
t[r_, n_] := Sum[ Sum[ (-1)^(2n - d - k/d)*Binomial[n, d]*Binomial[n, k/d]*Binomial[k, r], {d, Divisors[k]}], {k, r, n^2}]; Flatten[ Table[t[r, n], {r, 1, 10}, {n, 1, r}]] (* Jean-François Alcover, Jun 27 2012, from formula *)
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],Union[First/@#]==Union[Last/@#]==Range[k]&]],{n,6},{k,n}] (* Gus Wiseman, Nov 14 2018 *)
A230878
Irregular triangle read by rows: T(n,k) = number of 2-packed n X n matrices with exactly k nonzero entries (0 <= k <= n^2).
Original entry on oeis.org
1, 0, 2, 0, 0, 8, 32, 16, 0, 0, 0, 48, 720, 2880, 4992, 4608, 2304, 512, 0, 0, 0, 0, 384, 13824, 143872, 739328, 2320896, 4964352, 7659520, 8749056, 7421952, 4587520, 1966080, 524288, 65536, 0, 0, 0, 0, 0, 3840, 268800, 5504000, 57068800, 372416000
Offset: 0
Triangle begins:
1
0 2
0 0 8 32 16
0 0 0 48 720 2880 4992 4608 2304 512
...
-
p[k_, n_, l_] := Sum[(-1)^(i+j)*Binomial[n, i]*Binomial[n,j]*Binomial[i*j, l]*k^l, {i, 0, n}, {j, 0, n}];
T[n_, k_] := p[2, n, k];
Table[T[n, k], {n, 0, 5}, {k, 0, n^2}] // Flatten (* Jean-François Alcover, Oct 08 2017, translated from PARI *)
-
\\ T(n,k) = p(2,n,k) (see Cheballah et al. ref).
p(k,n,l) = {sum(i=0, n, sum(j=0, n, (-1)^(i+j) * binomial(n,i) * binomial(n,j) * binomial(i*j,l) * k^l))}
for (n=0,5, for(k=0,n^2, print1(p(2,n,k), ", ")); print); \\ Andrew Howroyd, Sep 20 2017
A230879
Number of 2-packed n X n matrices.
Original entry on oeis.org
1, 2, 56, 16064, 39156608, 813732073472, 147662286695991296, 237776857718965784182784, 3425329990022686416530808209408, 443021337239562368918979788606843912192, 515203019085226443540506018909263027730003787776
Offset: 0
-
p[k_, n_] := Sum[(-1)^(i + j)*Binomial[n, i]*Binomial[n, j]*(k + 1)^(i*j), {i, 0, n}, {j, 0, n}];
a[n_] := p[2, n];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Oct 08 2017, translated from PARI *)
-
\\ here p(k,n) is number of k-packed matrices of size n.
p(k,n)={sum(i=0, n, sum(j=0, n, (-1)^(i+j) * binomial(n,i) * binomial(n,j) * (k+1)^(i*j)))}
a(n) = p(2,n); \\ Andrew Howroyd, Sep 20 2017
A230880
Number of 2-packed matrices with exactly n nonzero entries.
Original entry on oeis.org
1, 2, 8, 80, 1120, 20544, 463744, 12422656, 384947200, 13541822464, 533049493504, 23210958688256, 1107652218822656, 57482801016422400, 3223015475535380480, 194157345516262588416, 12505948470244176953344, 857670052436844788318208, 62395270194815987194789888
Offset: 0
-
b[n_] := Sum[StirlingS1[n, k]*Sum[(m!)^2*StirlingS2[k, m]^2, {m, 0, k}], {k, 0, n}]/n!;
a[n_] := 2^n*b[n];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 08 2017, translated from PARI *)
-
\\ here b(n) is A104602.
b(n) = {sum(m=0, n, sum(k=0, n, stirling(n,k,1) * m!^2 * stirling(k,m,2)^2)) / n!}
a(n) = 2^n * b(n); \\ Andrew Howroyd, Sep 20 2017
Showing 1-6 of 6 results.
Comments