A104601
Triangle T(r,n) read by rows: number of n X n (0,1)-matrices with exactly r entries equal to 1 and no zero row or columns.
Original entry on oeis.org
1, 0, 2, 0, 4, 6, 0, 1, 45, 24, 0, 0, 90, 432, 120, 0, 0, 78, 2248, 4200, 720, 0, 0, 36, 5776, 43000, 43200, 5040, 0, 0, 9, 9066, 222925, 755100, 476280, 40320, 0, 0, 1, 9696, 727375, 6700500, 13003620, 5644800, 362880, 0, 0, 0, 7480, 1674840
Offset: 1
1
0,2
0,4,6
0,1,45,24
0,0,90,432,120
0,0,78,2248,4200,720
0,0,36,5776,43000,43200,5040
0,0,9,9066,222925,755100,476280,40320
0,0,1,9696,727375,6700500,13003620,5644800,362880
0,0,0,7480,1674840,37638036,179494350,226262400,71850240,3628800
-
t[r_, n_] := Sum[ Sum[ (-1)^(2n - d - k/d)*Binomial[n, d]*Binomial[n, k/d]*Binomial[k, r], {d, Divisors[k]}], {k, r, n^2}]; Flatten[ Table[t[r, n], {r, 1, 10}, {n, 1, r}]] (* Jean-François Alcover, Jun 27 2012, from formula *)
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],Union[First/@#]==Union[Last/@#]==Range[k]&]],{n,6},{k,n}] (* Gus Wiseman, Nov 14 2018 *)
A055602
Number of n X n binary matrices with no 0 rows or columns and with n+1 1's.
Original entry on oeis.org
0, 4, 45, 432, 4200, 43200, 476280, 5644800, 71850240, 979776000, 14270256000, 221298739200, 3642807168000, 63465795993600, 1167099373440000, 22596613079040000, 459548157100032000, 9795631769763840000
Offset: 1
A084485
Number of 3 X n 0-1 matrices which have n+2 1's and have no zero rows or zero columns.
Original entry on oeis.org
1, 12, 90, 522, 2595, 11673, 49014, 195828, 753813, 2819475, 10308144, 36998118, 130786695, 456452493, 1575799290, 5389290792, 18281487081, 61569776727, 206040460212, 685584843450, 2269566343611, 7478425876977, 24538396875870, 80206515476892, 261239771497725
Offset: 1
- M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550, 2013. - From N. J. A. Sloane, Feb 13 2013
- M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5
- Index entries for linear recurrences with constant coefficients, signature (15,-93,305,-558,540,-216)
-
with(LinearAlgebra): num1s:= (M, m, n)->add(ListTools[Flatten](convert(M, listlist))[j], j=1..m*n): binrows:= n->[seq(convert(i+2^n, base, 2)[1..n], i=1..2^n-1)]: a:= proc(n) local A, L, i, j, k, S, M: S := 0: L := binrows(n): for i from 1 to 2^n-1 do for j from 1 to 2^n-1 do for k from 1 to 2^n-1 do A := Matrix([L[i], L[j], L[k]]); if num1s(A, 3, n)=n+2 and (not has(Matrix([1, 1, 1]).A, 0)) then S := S+1; end if; od; od; od; S; end proc: seq (a(n), n=1..5);
-
a[n_] := n*(4*(3*n - 1)*3^n - 9*(n - 1)*2^n)/24;
Array[a, 25] (* Jean-François Alcover, Nov 10 2017, after Vladeta Jovovic *)
A084486
Number of 4 X n 0-1 matrices which have n+3 1's and have no zero rows or zero columns.
Original entry on oeis.org
1, 32, 522, 5776, 50600, 380424, 2570932, 16073600, 94748400, 533515240, 2896652396, 15268777440, 78544641448, 395875164104, 1960998472260, 9570684204544, 46112171619296, 219682468794600, 1036237335593500
Offset: 1
-
with(LinearAlgebra): num1s := (M,m,n)->add(ListTools[Flatten](convert(M,listlist))[j],j=1..m*n): binrows := n->[seq(convert(i+2^n,base,2)[1..n],i=1..2^n-1)]; a := proc(n) local A,L,i,j,k,el,S,M: S := 0: L := binrows(n): for i from 1 to 2^n-1 do for j from 1 to 2^n-1 do for k from 1 to 2^n-1 do for el from 1 to 2^n-1 do A := Matrix([L[i],L[j],L[k],L[el]]); if num1s(A,4,n)=n+3 and (not has(Matrix([1,1,1,1]).A,0)) then S := S+1; end if; od; od; od; od; S; end proc: seq (a(n), n=1..2);
-
a[n_] := n/48*((27*4^n - 32*3^n + 6*2^n)*n^2 + (-9*4^n + 32*3^n - 18*2^n)*n + (-6*4^n + 12*2^n));
Array[a, 20] (* Jean-François Alcover, Nov 10 2017, after Vladeta Jovovic *)
Showing 1-4 of 4 results.
Comments