A055621 Number of covers of an unlabeled n-set.
1, 1, 4, 34, 1952, 18664632, 12813206150470528, 33758171486592987151274638874693632, 1435913805026242504952006868879460423801146743462225386100617731367239680
Offset: 0
Examples
There are 4 nonisomorphic covers of {1,2}, namely {{1},{2}}, {{1,2}}, {{1},{1,2}} and {{1},{2},{1,2}}. From _Gus Wiseman_, Aug 14 2019: (Start) Non-isomorphic representatives of the a(3) = 34 covers: {123} {1}{23} {1}{2}{3} {1}{2}{3}{23} {13}{23} {1}{3}{23} {1}{2}{13}{23} {3}{123} {2}{13}{23} {1}{2}{3}{123} {23}{123} {2}{3}{123} {2}{3}{13}{23} {3}{13}{23} {1}{3}{23}{123} {12}{13}{23} {2}{3}{23}{123} {1}{23}{123} {3}{12}{13}{23} {3}{23}{123} {2}{13}{23}{123} {13}{23}{123} {3}{13}{23}{123} {12}{13}{23}{123} . {1}{2}{3}{13}{23} {1}{2}{3}{12}{13}{23} {1}{2}{3}{12}{13}{23}{123} {1}{2}{3}{23}{123} {1}{2}{3}{13}{23}{123} {2}{3}{12}{13}{23} {2}{3}{12}{13}{23}{123} {1}{2}{13}{23}{123} {2}{3}{13}{23}{123} {3}{12}{13}{23}{123} (End)
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 78 (2.3.39)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..12
- Heller, Jürgen Identifiability in probabilistic knowledge structures. J. Math. Psychol. 77, 46-57 (2017).
- Eric Weisstein's World of Mathematics, Cover
Crossrefs
Programs
-
Maple
b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]), h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0, add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))) end: a:= n-> `if`(n=0, 2, b(n$2, [])-b(n-1$2, []))/2: seq(a(n), n=0..8); # Alois P. Heinz, Aug 14 2019
-
Mathematica
b[n_, i_, l_] := b[n, i, l] = If[n==0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][If[l=={}, 1, LCM@@l]], If[i<1, 0, Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]]; a[n_] := If[n==0, 2, b[n, n, {}] - b[n-1, n-1, {}]]/2; a /@ Range[0, 8] (* Jean-François Alcover, Jan 31 2020, after Alois P. Heinz *)
Formula
Extensions
More terms from David Moews (dmoews(AT)xraysgi.ims.uconn.edu) Jul 04 2002
a(0) = 1 prepended by Gus Wiseman, Aug 14 2019