A055744 Numbers k such that k and phi(k) have the same prime factors.
1, 4, 8, 16, 18, 32, 36, 50, 54, 64, 72, 100, 108, 128, 144, 162, 200, 216, 250, 256, 288, 294, 324, 400, 432, 450, 486, 500, 512, 576, 578, 588, 648, 800, 864, 882, 900, 972, 1000, 1014, 1024, 1152, 1156, 1176, 1210, 1250, 1296, 1350, 1458, 1600, 1728, 1764
Offset: 1
Keywords
Examples
k = 578 = 2*17*17, phi(578) = 272 = 2*2*2*2*17 with 2 and 17 prime factors, so 578 is a term. k = 588 = 2*2*3*7*7, phi(588) = 168 = 2*2*2*3*7, so 588 is a term. k = 264196 = 2*2*257*257, phi(264196) = 512*257 = 131584, so 264196 is a term.
Links
- David A. Corneth, Table of n, a(n) for n = 1..117561 (terms <= 10^11; first 10000 terms from T. D. Noe)
- Paul Pollack and Carl Pomerance, Prime-Perfect Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 12a, Paper A14, 2012.
Crossrefs
Programs
-
Haskell
a055744 n = a055744_list !! (n-1) a055744_list = 1 : filter f [2..] where f x = all ((== 0) . mod x) (concatMap (a027748_row . subtract 1) ps) && all ((== 0) . mod (a173557 x)) (map fst $ filter ((== 1) . snd) $ zip ps $ a124010_row x) where ps = a027748_row x -- Reinhard Zumkeller, Jun 01 2015
-
Maple
select(numtheory:-factorset = numtheory:-factorset @ numtheory:-phi, [1, 2*i $ i=1..2000]); # Robert Israel, Mar 19 2015 isA055744 := proc(n) nfs := numtheory[factorset](n) ; phinfs := numtheory[factorset](numtheory[phi](n)) ; if nfs = phinfs then true; else false; end if; end proc: A055744 := proc(n) if n = 1 then 1; else for a from procname(n-1)+1 do if isA055744(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Sep 23 2016
-
Mathematica
Select[Range@ 1800, First /@ FactorInteger@ # == First /@ FactorInteger@ EulerPhi@ # &] (* Michael De Vlieger, Mar 21 2015 *)
-
PARI
is(n)=factor(n)[,1]==factor(eulerphi(n))[,1] \\ Charles R Greathouse IV, Oct 31 2011
-
PARI
is(n)=my(f=factor(n)); f[,1]==factor(eulerphi(f))[,1] \\ Charles R Greathouse IV, May 26 2015
Extensions
Corrected and extended by James Sellers, Jul 11 2000
Comments