A055786 Numerators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).
1, 1, 3, 5, 35, 63, 231, 143, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 100180065, 116680311, 2268783825, 1472719325, 34461632205, 67282234305, 17534158031, 514589420475, 8061900920775, 5267108601573
Offset: 0
Examples
arcsin(x) is usually written as x + x^3/(2*3) + 1*3*x^5/(2*4*5) + 1*3*5*x^7/(2*4*6*7) + ..., which is x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ... (A055786/A002595) when reduced to lowest terms. arccos(x) = Pi/2 - (x + (1/6)*x^3 + (3/40)*x^5 + (5/112)*x^7 + (35/1152)*x^9 + (63/2816)*x^11 + ...) (A055786/A002595). arccsc(x) = 1/x + 1/(6*x^3) + 3/(40*x^5) + 5/(112*x^7) + 35/(1152*x^9) + 63/(2816*x^11) + ... (A055786/A002595). arcsec(x) = Pi/2 -(1/x + 1/(6*x^3) + 3/(40*x^5) + 5/(112*x^7) + 35/(1152*x^9) + 63/(2816*x^11) + ...) (A055786/A002595). arcsinh(x) = x - (1/6)*x^3 + (3/40)*x^5 - (5/112)*x^7 + (35/1152)*x^9 - (63/2816)*x^11 + ... (A055786/A002595). i*Pi/2 - arccosh(x) = i*x + (1/6)*i*x^3 + (3/40)*i*x^5 + (5/112)*i*x^7 + (35/1152)*i*x^9 + (63/2816)*i*x^11 + (231/13312)*i*x^13 + (143/10240)*i*x^15 + (6435/557056)*i*x^17 + ... (A055786/A002595). 0, 1, 0, 1/6, 0, 3/40, 0, 5/112, 0, 35/1152, 0, 63/2816, 0, 231/13312, 0, 143/10240, 0, 6435/557056, 0, 12155/1245184, 0, 46189/5505024, 0, ... = A055786/A002595. a(4) = 35 = 3*5*7*9 / gcd( 3*5*7*9, (2*4*6*8) * (2*4+1))
References
- Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.2.6
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
- H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, Chap. 3.
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- Eric Weisstein's World of Mathematics, Inverse Cosecant.
- Eric Weisstein's World of Mathematics, Inverse Cosine.
- Eric Weisstein's World of Mathematics, Inverse Secant.
- Eric Weisstein's World of Mathematics, Inverse Sine.
- Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosecant.
- Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosine.
- Eric Weisstein's World of Mathematics, Inverse Hyperbolic Sine.
- Herbert S. Wilf, Generatingfunctionology, Academic Press, NY, 1994. See p. 54.
Crossrefs
Programs
-
Magma
[Numerator( (n+1)*Binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ): n in [0..25]]; // G. C. Greubel, Jan 25 2020
-
Maple
seq( numer( (n+1)*binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ), n=0..25); # G. C. Greubel, Jan 25 2020
-
Mathematica
Numerator/@Select[CoefficientList[Series[ArcSin[x],{x,0,60}],x], #!=0&] (* Harvey P. Dale, Apr 29 2011 *)
-
PARI
vector(25, n, numerator(2*n*binomial(2*n,n)/(4^n*(2*n-1)^2)) ) \\ G. C. Greubel, Jan 25 2020
-
Sage
[numerator( (n+1)*binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ) for n in (0..25)] # G. C. Greubel, Jan 25 2020
Formula
a(n) / A052469(n) = A001147(n) / ( A000165(n) *2*n ). E.g., a(6) = 77 = 1*3*5*7*9*11 / gcd( 1*3*5*7*9*11, 2*4*6*8*10*12*12 ).
a(n) = numerator((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))). - Johannes W. Meijer, Jul 06 2009
Extensions
Edited by Johannes W. Meijer, Jul 06 2009
Comments