cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055786 Numerators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).

Original entry on oeis.org

1, 1, 3, 5, 35, 63, 231, 143, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 100180065, 116680311, 2268783825, 1472719325, 34461632205, 67282234305, 17534158031, 514589420475, 8061900920775, 5267108601573
Offset: 0

Views

Author

N. J. A. Sloane, Jul 13 2000

Keywords

Comments

Note that the sequence is not monotonic.

Examples

			arcsin(x) is usually written as x + x^3/(2*3) + 1*3*x^5/(2*4*5) + 1*3*5*x^7/(2*4*6*7) + ..., which is x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ... (A055786/A002595) when reduced to lowest terms.
arccos(x) = Pi/2 - (x + (1/6)*x^3 + (3/40)*x^5 + (5/112)*x^7 + (35/1152)*x^9 + (63/2816)*x^11 + ...) (A055786/A002595).
arccsc(x) = 1/x + 1/(6*x^3) + 3/(40*x^5) + 5/(112*x^7) + 35/(1152*x^9) + 63/(2816*x^11) + ... (A055786/A002595).
arcsec(x) = Pi/2 -(1/x + 1/(6*x^3) + 3/(40*x^5) + 5/(112*x^7) + 35/(1152*x^9) + 63/(2816*x^11) + ...) (A055786/A002595).
arcsinh(x) = x - (1/6)*x^3 + (3/40)*x^5 - (5/112)*x^7 + (35/1152)*x^9 - (63/2816)*x^11 + ... (A055786/A002595).
i*Pi/2 - arccosh(x) = i*x + (1/6)*i*x^3 + (3/40)*i*x^5 + (5/112)*i*x^7 + (35/1152)*i*x^9 + (63/2816)*i*x^11 + (231/13312)*i*x^13 + (143/10240)*i*x^15 + (6435/557056)*i*x^17 + ... (A055786/A002595).
0, 1, 0, 1/6, 0, 3/40, 0, 5/112, 0, 35/1152, 0, 63/2816, 0, 231/13312, 0, 143/10240, 0, 6435/557056, 0, 12155/1245184, 0, 46189/5505024, 0, ... = A055786/A002595.
a(4) = 35 = 3*5*7*9 / gcd( 3*5*7*9, (2*4*6*8) * (2*4+1))
		

References

  • Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.2.6
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
  • H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, Chap. 3.

Crossrefs

Cf. A002595.
a(n) / A002595(n) = A001147(n) / ( A000165(n) * (2*n+1))
Cf. A162443 where BG1[-3,n] = (-1)*A002595(n-1)/A055786(n-1) for n >= 1. - Johannes W. Meijer, Jul 06 2009

Programs

  • Magma
    [Numerator( (n+1)*Binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ): n in [0..25]]; // G. C. Greubel, Jan 25 2020
    
  • Maple
    seq( numer( (n+1)*binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ), n=0..25); # G. C. Greubel, Jan 25 2020
  • Mathematica
    Numerator/@Select[CoefficientList[Series[ArcSin[x],{x,0,60}],x], #!=0&]  (* Harvey P. Dale, Apr 29 2011 *)
  • PARI
    vector(25, n, numerator(2*n*binomial(2*n,n)/(4^n*(2*n-1)^2)) ) \\ G. C. Greubel, Jan 25 2020
    
  • Sage
    [numerator( (n+1)*binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ) for n in (0..25)] # G. C. Greubel, Jan 25 2020

Formula

a(n) / A052469(n) = A001147(n) / ( A000165(n) *2*n ). E.g., a(6) = 77 = 1*3*5*7*9*11 / gcd( 1*3*5*7*9*11, 2*4*6*8*10*12*12 ).
a(n) = numerator((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))). - Johannes W. Meijer, Jul 06 2009

Extensions

Edited by Johannes W. Meijer, Jul 06 2009