A055793 Numbers k such that k and floor[k/3] are both squares; i.e., squares which remain squares when written in base 3 and last digit is removed.
0, 1, 4, 49, 676, 9409, 131044, 1825201, 25421764, 354079489, 4931691076, 68689595569, 956722646884, 13325427460801, 185599261804324, 2585064237799729, 36005300067391876, 501489136705686529, 6984842613812219524, 97286307456665386801, 1355023461779503195684, 18873042157456379352769
Offset: 1
Examples
a(3) = 49 because 49 = 7^2 = 1211 base 3 and 121 base 3 = 16 = 4^2.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..800
- Tom C. Brown and Peter J Shiue, Squares of second-order linear recurrence sequences, Fib. Quart., 33 (1994), 352-356.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 48, 56.
- M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- Index to sequences related to truncating digits of squares.
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
Crossrefs
Programs
-
Magma
I:=[0, 1, 4]; [n le 3 select I[n] else 14*Self(n-1) - Self(n-2) - 6: n in [1..30]]; // Vincenzo Librandi, Jan 27 2013
-
Maple
A055793 := proc(n) coeftayl(x*(1-11*x+4*x^2)/((1-x)*(1-14*x+x^2)), x=0, n); end proc: seq(A055793(n), n=0..20); # Wesley Ivan Hurt, Sep 28 2014
-
Mathematica
CoefficientList[Series[x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 28 2014 *) LinearRecurrence[{15,-15,1},{0,1,4,49},40] (* Harvey P. Dale, Jun 19 2021 *)
-
PARI
sq3nsqplus1(n) = { for(x=1,n, y = 3*x*x+1; \ print1(y" ") if(issquare(y),print1(y" ")) ) }
Formula
a(n) = 3*A098301(n-2)+1. - R. J. Mathar, Jun 11 2009
a(n) = 14*a(n-1)-a(n-2)-6, with a(0)=1, a(1)=4. (See Brown and Shiue)
G.f.: x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)). - M. F. Hasler, Jan 15 2012
Extensions
More terms from Cino Hilliard, Mar 01 2003
Comments