cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055809 a(n) = T(n,n-4), array T as in A055807.

Original entry on oeis.org

1, 15, 32, 56, 88, 129, 180, 242, 316, 403, 504, 620, 752, 901, 1068, 1254, 1460, 1687, 1936, 2208, 2504, 2825, 3172, 3546, 3948, 4379, 4840, 5332, 5856, 6413, 7004, 7630, 8292, 8991, 9728, 10504, 11320, 12177, 13076
Offset: 4

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

If Y_i (i=1,2,3,4) are 2-blocks of an n-set X then, for n>=8, a(n-2) is the number of (n-3)-subsets of X intersecting each Y_i (i=1,2,3,4). - Milan Janjic, Nov 09 2007

Crossrefs

Programs

  • GAP
    Concatenation([1], List([5..50], n-> n*(n^2 +3*n -22)/6 )); # G. C. Greubel, Jan 23 2020
  • Magma
    [1] cat [n*(n^2 +3*n -22)/6: n in [5..50]]; // G. C. Greubel, Jan 23 2020
    
  • Maple
    seq( `if`(n=4, 1, n*(n^2 +3*n -22)/6), n=4..50); # G. C. Greubel, Jan 23 2020
  • Mathematica
    f[n_]:=Sum[i+i^2-8,{i,1,n}]/2;Table[f[n],{n,5,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2010 *)
    Table[If[n==4, 1, n*(n^2 +3*n -22)/6], {n,4,50}] (* G. C. Greubel, Jan 23 2020 *)
  • PARI
    Vec(x^4*(1 + 11*x - 22*x^2 + 14*x^3 - 3*x^4)/(1-x)^4 + O(x^50)) \\ Michel Marcus, Jan 10 2015
    
  • PARI
    vector(50, n, my(m=n+3); if(m==4, 1, m*(m^2 +3*m -22)/6)) \\ G. C. Greubel, Jan 23 2020
    
  • Sage
    [1]+[n*(n^2 +3*n -22)/6 for n in (5..50)] # G. C. Greubel, Jan 23 2020
    

Formula

For n>4, a(n) = n*(n^2 + 3*n - 22)/6.
G.f.: x^4*(1 + 11*x - 22*x^2 + 14*x^3 - 3*x^4)/(1-x)^4. - Colin Barker, Feb 22 2012
E.g.f.: x*(72 +48*x +8*x^2 -3*x^2 + (-72 +24*x +4*x^2)*exp(x))/24. - G. C. Greubel, Jan 23 2020