cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A056123 a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=11.

Original entry on oeis.org

1, 11, 32, 85, 223, 584, 1529, 4003, 10480, 27437, 71831, 188056, 492337, 1288955, 3374528, 8834629, 23129359, 60553448, 158530985, 415039507, 1086587536, 2844723101, 7447581767, 19498022200, 51046484833, 133641432299
Offset: 0

Views

Author

Barry E. Williams, Jul 06 2000

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> Fibonacci(2*n+2) +8*Fibonacci(2*n) ); # G. C. Greubel, Jan 17 2020
  • Magma
    [Fibonacci(2*n+2) +8*Fibonacci(2*n): n in [0..30]]; // G. C. Greubel, Jan 17 2020
    
  • Maple
    with(combinat); seq( fiboacci(2*n+2) +8*fibonacci(2*n), n=0..30); # G. C. Greubel, Jan 17 2020
  • Mathematica
    Table[Fibonacci[2*n+2] +8*Fibonacci[2*n], {n,0,30}] (* G. C. Greubel, Jan 17 2020 *)
  • PARI
    vector(31, n, fibonacci(2*n) +8*fibonacci(2*n-2) ) \\ G. C. Greubel, Jan 17 2020
    
  • Sage
    [fibonacci(2*n+2) +8*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 17 2020
    

Formula

a(n) = {11*[((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n] - [((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)]}/sqrt(5).
G.f.: (1+8*x)/(1-3*x+x^2).
a(n) = 6*Lucas(2n+1) - Fibonacci(2n+5).
From G. C. Greubel, Jan 17 2020: (Start)
a(n) = Fibonacci(2*n+2) + 8*Fibonacci(2*n).
E.g.f.: exp(3*t/2)*( cosh(sqrt(5)*t/2) + (19/sqrt(5))*sinh(sqrt(5)*t/2) ). (End)

A056124 a(n) = 3*a(n-1) - a(n-2) + 8 with a(0)=1, a(1)=11.

Original entry on oeis.org

1, 11, 40, 117, 319, 848, 2233, 5859, 15352, 40205, 105271, 275616, 721585, 1889147, 4945864, 12948453, 33899503, 88750064, 232350697, 608302035, 1592555416, 4169364221, 10915537255, 28577247552, 74816205409
Offset: 0

Views

Author

Barry E. Williams, Jul 07 2000

Keywords

Crossrefs

Cf. A000032, A000045, A055850 (first differences).

Programs

  • GAP
    List([0..30], n-> Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8 ); # G. C. Greubel, Jan 19 2020
  • Magma
    [Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8: n in [0..30]]; // G. C. Greubel, Jan 19 2020
    
  • Maple
    with(combinat); seq( fibonacci(2*n+2) + 8*fibonacci(2*n+1) - 8, n=0..30); # G. C. Greubel, Jan 19 2020
  • Mathematica
    LinearRecurrence[{4,-4,1},{1,11,40},30] (* Harvey P. Dale, Mar 25 2015 *)
  • PARI
    vector(31, n, fibonacci(2*n) +8*fibonacci(2*n-1) -8 ) \\ G. C. Greubel, Jan 19 2020
    
  • Sage
    [fibonacci(2*n+2) + 8*fibonacci(2*n+1) - 8 for n in (0..30)] # G. C. Greubel, Jan 19 2020
    

Formula

a(n) = ( 19*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - 9*(((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)) )/sqrt(5) - 8.
G.f.: (1+7*x)/((1-x)*(1-3*x+x^2)).
a(n) = Fibonacci(2*n+5) + 2*Lucas(2*n) - 8.
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8.
E.g.f.: exp(3*x/2)*( 9*cosh(sqrt(5)*x/2) - (11/sqrt(5))*sinh(sqrt(5)*x/2) ) - 8*exp(x). (End)
Showing 1-2 of 2 results.