A055870 Signed Fibonomial triangle.
1, 1, -1, 1, -1, -1, 1, -2, -2, 1, 1, -3, -6, 3, 1, 1, -5, -15, 15, 5, -1, 1, -8, -40, 60, 40, -8, -1, 1, -13, -104, 260, 260, -104, -13, 1, 1, -21, -273, 1092, 1820, -1092, -273, 21, 1, 1, -34, -714, 4641, 12376, -12376, -4641, 714, 34, -1, 1, -55, -1870, 19635, 85085, -136136, -85085, 19635, 1870, -55, -1
Offset: 0
Examples
Row polynomial for n=4: p(4,x) = 1-3*x-6*x^2+3*x^3+x^4 = (1+x-x^2)*(1-4*x-x^2). 1/p(4,x) is G.f. for A010048(n+3,3), n >= 0: {1,3,15,60,...} = A001655(n). For n=3: 1*(Fibonacci(k))^3 - 3*(Fibonacci(k-1))^3 - 6*(Fibonacci(k-2))^3 + 3*(Fibonacci(k-3))^3 + 1*(Fibonacci(k-4))^3 = 0, k >= 4; inputs: (Fibonacci(k))^3, k=0..3. The triangle begins: n\m 0 1 2 3 4 5 6 7 8 9 0 1 1 1 -1 2 1 -1 -1 3 1 -2 -2 1 4 1 -3 -6 3 1 5 1 -5 -15 15 5 -1 6 1 -8 -40 60 40 -8 -1 7 1 -13 -104 260 260 -104 -13 1 8 1 -21 -273 1092 1820 -1092 -273 21 1 9 1 -34 -714 4641 12376 -12376 -4641 714 34 -1 ... [_Wolfdieter Lang_, Aug 06 2012; a(7,1) corrected, Oct 10 2012]
References
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, pp. 84-5 and 492.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Katharine A. Ahrens, Combinatorial Applications of the k-Fibonacci Numbers: A Cryptographically Motivated Analysis, Ph. D. thesis, North Carolina State University (2020).
- A. T. Benjamin, S. S. Plott, A combinatorial approach to fibonomial coefficients, Fib. Quart. 46/47 (1) (2008/9) 7-9.
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- H. W. Gould, Extensions of the Hermite g.c.d. theorems for binomial coefficients, Fib Quart. 33 (1995) 386.
- E. Kilic, The generalized Fibonomial matrix, Eur. J. Combinat. 31 (1) (2010) 193-209.
- Ron Knott, The Fibonomials
- Ewa Krot, An introduction to finite fibonomial calculus, Centr. Eur. J. Math. 2 (5) (2004) 754.
- A. K. Kwasniewski, Fibonomial cumulative connection constants, arXiv:math/0406006 [math.CO], 2004-2009.
- Phakhinkon Phunphayap, Various Problems Concerning Factorials, Binomial Coefficients, Fibonomial Coefficients, and Palindromes, Ph. D. Thesis, Silpakorn University (Thailand 2021).
- Phakhinkon Phunphayap, Prapanpong Pongsriiam, Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients, J. Int. Seq. 21 (2018), #18.3.1.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- J. Seibert and P. Trojovsky, On some identities for the Fibonomial coefficients, Math. Slov. 55 (2005) 9-19.
- P. Trojovsky, On some identities for the Fibonomial coefficients..., Discr. Appl. Math. 155 (15) (2007) 2017.
Crossrefs
Programs
-
Magma
Fibonomial:= func< n,k | k eq 0 select 1 else (&*[Fibonacci(n-j+1)/Fibonacci(j): j in [1..k]]) >; [(-1)^Floor((k+1)/2)*Fibonomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 20 2024
-
Maple
A055870 := proc(n,k) (-1)^floor((k+1)/2)*A010048(n,k) ; end proc: # R. J. Mathar, Jun 14 2015
-
Mathematica
T[n_, m_]:= {1,-1,-1,1}[[Mod[m,4] + 1]] * Product[ Fibonacci[n-j+1]/Fibonacci[j], {j, m}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Jean-François Alcover, Jul 05 2013 *)
-
SageMath
def fibonomial(n,k): return 1 if k==0 else product(fibonacci(n-j+1)/fibonacci(j) for j in range(1,k+1)) flatten([[(-1)^((k+1)//2)*fibonomial(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 20 2024
Formula
G.f. for column m: (-1)^floor((m+1)/2)*x^m/p(m+1, x) with the row polynomial of the (signed) triangle: p(n, x) := Sum_{m=0..n} T(n, m)*x^m.
Sum_{k=0..n} T(n,k) * x^k = exp( -Sum_{k>=1} Fibonacci(n*k)/Fibonacci(k) * x^k/k ). - Seiichi Manyama, May 07 2025
Comments