0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, 33552, 87841, 229970, 602070, 1576239, 4126648, 10803704, 28284465, 74049690, 193864606, 507544127, 1328767776, 3478759200, 9107509825, 23843770274, 62423800998, 163427632719, 427859097160, 1120149658760
Offset: 0
A015448
a(0) = 1, a(1) = 1, and a(n) = 4*a(n-1) + a(n-2) for n >= 2.
Original entry on oeis.org
1, 1, 5, 21, 89, 377, 1597, 6765, 28657, 121393, 514229, 2178309, 9227465, 39088169, 165580141, 701408733, 2971215073, 12586269025, 53316291173, 225851433717, 956722026041, 4052739537881, 17167680177565, 72723460248141, 308061521170129, 1304969544928657, 5527939700884757
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..200
- Joerg Arndt, Matters Computational (The Fxtbook), pp. 313-315.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (see Corollary 1 (vi)).
- Gary Detlefs and Wolfdieter Lang, Improved Formula for the Multi-Section of the Linear Three-Term Recurrence Sequence, arXiv:2304.12937 [math.CO], 2023.
- Amelia Gilson, Hadley Killen, Steven J. Miller, Nadia Razek, Joshua M. Siktar, and Liza Sulkin, Zeckendorf's Theorem Using Indices in an Arithmetic Progression, arXiv:2005.10396 [math.NT], 2020.
- Edyta Hetmaniok, Bozena Piatek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Math. 15 (2017), 477-485.
- I. M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Bahar Kuloğlu, Engin Özkan, and Marin Marin, Fibonacci and Lucas Polynomials in n-gon, An. Şt. Univ. Ovidius Constanţa (Romania 2023) Vol. 31, No 2, 127-140.
- Roman Witula, Binomials transformation formulae of scaled Lucas numbers, Demonstratio Math. 46 (2013), 15-27.
- R. Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math 3 (2009) 310-329, MR2555042
- Index entries for linear recurrences with constant coefficients, signature (4,1).
-
[Fibonacci(3*n-1): n in [0..40]]; // Vincenzo Librandi, Jul 04 2015
-
with(combinat): a:=n->fibonacci(n,4)-3*fibonacci(n-1,4): seq(a(n), n=1..23); # Zerinvary Lajos, Apr 04 2008
-
Fibonacci/@(3*Range[0,30]-1) (* Vladimir Joseph Stephan Orlovsky, Mar 01 2010 *)
LinearRecurrence[{4,1},{1,1},30] (* Harvey P. Dale, May 15 2019 *)
-
a[0]:1$
a[1]:1$
a[n]:=4*a[n-1]+a[n-2]$
A015448(n):=a[n]$
makelist(A015448(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
-
a(n) = fibonacci(3*n-1); \\ Altug Alkan, Dec 10 2015
A010048
Triangle of Fibonomial coefficients, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 5, 15, 15, 5, 1, 1, 8, 40, 60, 40, 8, 1, 1, 13, 104, 260, 260, 104, 13, 1, 1, 21, 273, 1092, 1820, 1092, 273, 21, 1, 1, 34, 714, 4641, 12376, 12376, 4641, 714, 34, 1, 1, 55, 1870, 19635, 85085, 136136, 85085, 19635, 1870, 55, 1
Offset: 0
First few rows of the triangle T(n, k) are:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 1 1
2: 1 1 1
3: 1 2 2 1
4: 1 3 6 3 1
5: 1 5 15 15 5 1
6: 1 8 40 60 40 8 1
7: 1 13 104 260 260 104 13 1
8: 1 21 273 1092 1820 1092 273 21 1
9: 1 34 714 4641 12376 12376 4641 714 34 1
10: 1 55 1870 19635 85085 136136 85085 19635 1870 55 1
... - Table extended and reformatted by _Wolfdieter Lang_, Oct 10 2012
For n=7 and k=3, n - k + 1 = 7 - 3 + 1 = 5, so T(7,3) = F(7)*F(6)*F(5)/( F(3)*F(2)*F(1)) = 13*8*5/(2*1*1) = 520/2 = 260. - _Michael B. Porter_, Sep 26 2016
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 84 and 492.
- T. D. Noe, Rows n = 0..50 of triangle, flattened
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- A. T. Benjamin and S. S. Plott, A combinatorial approach to fibonomial coefficients, Fib. Quart. 46/47 (1) (2008/9) 7-9.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972.
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- M. Dziemianczuk, Cobweb Sequences Map, See sequence (4).2. [Dead link]
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
- P. F. F. Espinosa, J. F. González, J. P. Herrán, A. M. Cañadas, and J. L. Ramírez, On some relationships between snake graphs and Brauer configuration algebras, Algebra Disc. Math. (2022) Vol. 33, No. 2, 29-59.
- Sergio Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
- Dale Gerdemann, Golden Ratio Base Digit Patterns for Columns of the Fibonomial Triangle, "Another interesting pattern is for Golden Rectangle Numbers A001654. I made a short video illustrating this pattern, along with other columns of the Fibonomial Triangle A010048".
- Dale K. Hathaway and Stephen L. Brown, Fibonacci Powers and a Fascinating Triangle, The College Mathematics Journal, 28 (No. 2, 1997), 124-128. See Fig. 1.
- Ron Knott, The Fibonomials.
- E. Krot, An introduction to finite Fibonomial calculus, arXiv:math/0503210 [math.CO], 2005.
- E. Krot, Further developments in Fibonomial calculus, arXiv:math/0410550 [math.CO], 2004.
- D. Marques and P. Trojovsky, On Divisibility of Fibonomial Coefficients by 3, J. Int. Seq. 15 (2012) #12.6.4.
- D. Marques and P. Trojovsky, The p-adic order of some fibonomial coefficients, J. Int. Seq. 18 (2015) # 15.3.1.
- Romeo Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Phakhinkon Phunphayap, Various Problems Concerning Factorials, Binomial Coefficients, Fibonomial Coefficients, and Palindromes, Ph. D. Thesis, Silpakorn University (Thailand 2021).
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients, J. Int. Seq. 21 (2018), #18.3.1.
- C. Pita, On s-Fibonomials, J. Int. Seq. 14 (2011) # 11.3.7.
- C. J. Pita Ruiz Velasco, Sums of Products of s-Fibonacci Polynomial Sequences, J. Int. Seq. 14 (2011) # 11.7.6.
- T. M. Richardson, The Filbert Matrix, arXiv:math/9905079 [math.RA], 1992.
- Bruce Sagan, Two Binomial Coefficient Analogues, Slides, 2013.
- Jeremiah Southwick, A Conjecture concerning the Fibonomial Triangle, arXiv:1604.04775 [math.NT], 2016.
- Ralf Stephan, A recurrence for the fibonomials.
- Eric Weisstein's World of Mathematics, Fibonacci Coefficient, q-Binomial Coefficient.
Cf.
A055870 (signed version of triangle).
-
Fibonomial:= func< n,k | k eq 0 select 1 else (&*[Fibonacci(n-j+1)/Fibonacci(j): j in [1..k]]) >;
[Fibonomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 20 2024
-
A010048 := proc(n,k)
mul(combinat[fibonacci](i),i=n-k+1..n)/mul(combinat[fibonacci](i),i=1..k) ;
end proc:
seq(seq(A010048(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 05 2015
-
f[n_, k_] := Product[ Fibonacci[n - j + 1]/Fibonacci[j], {j, k}]; Table[ f[n, i], {n, 0, 10}, {i, 0, n}] (* Robert G. Wilson v, Dec 04 2009 *)
Column[Round@Table[GoldenRatio^(k(n-k)) QBinomial[n, k, -1/GoldenRatio^2], {n, 0, 10}, {k, 0, n}], Center] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *)
T[n_, k_] := With[{c = ArcCsch[2] - I Pi/2}, Product[I^j Sinh[c j], {j, k + 1, n}] / Product[I^j Sinh[c j], {j, 1, n - k}]]; Table[Simplify[T[n, k]], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Jul 08 2025 *)
-
ffib(n):=prod(fib(k),k,1,n);
fibonomial(n,k):=ffib(n)/(ffib(k)*ffib(n-k));
create_list(fibonomial(n,k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 02 2012 */
-
T(n, k) = prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
-
def fibonomial(n,k): return 1 if k==0 else product(fibonacci(n-j+1)/fibonacci(j) for j in range(1,k+1))
flatten([[fibonomial(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 20 2024
A056570
Third power of Fibonacci numbers (A000045).
Original entry on oeis.org
0, 1, 1, 8, 27, 125, 512, 2197, 9261, 39304, 166375, 704969, 2985984, 12649337, 53582633, 226981000, 961504803, 4073003173, 17253512704, 73087061741, 309601747125, 1311494070536, 5555577996431, 23533806109393, 99690802348032, 422297015640625
Offset: 0
a(4) = 27 because the fourth Fibonacci number is 3 and 3^3 = 27.
a(5) = 125 because the fifth Fibonacci number is 5 and 5^3 = 125.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Vincenzo Librandi, Table of n, a(n) for n = 0..173
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- Andrej Dujella, A bijective proof of Riordan's theorem on powers of Fibonacci numbers, Discrete Math. 199 (1999), no. 1-3, 217--220. MR1675924 (99k:05016).
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers cubed, Fib. Q. 58:5 (2020) 128-134.
- D. Foata and G.-N. Han, Nombres de Fibonacci et polynomes orthogonaux
- Mariana Nagy, Simon R. Cowell and Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019.
- Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop and Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp 4623-4627.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5.
- H. C. Williams and R. K. Guy, Odd and even linear divisibility sequences of order 4, INTEGERS, 2015, #A33.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
-
[Fibonacci(n)^3: n in [0..30]]; // Vincenzo Librandi, Jun 04 2011
-
A056570 := proc(n) combinat[fibonacci](n)^3 ; end proc:
seq(A056570(n),n=0..20) ;
-
Table[Fibonacci[n]^3, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2008 *)
-
a(n)=fibonacci(n)^3 \\ Charles R Greathouse IV, Sep 24 2015
-
concat(0, Vec(x*(1-2*x-x^2)/((1+x-x^2)*(1-4*x-x^2)) + O(x^30))) \\ Colin Barker, Jun 04 2016
-
[fibonacci(n)^3 for n in (0..30)] # G. C. Greubel, Feb 20 2019
A056588
Coefficient triangle of certain polynomials.
Original entry on oeis.org
1, 1, -1, 1, -2, -1, 1, -4, -4, 1, 1, -7, -16, 7, 1, 1, -12, -53, 53, 12, -1, 1, -20, -166, 318, 166, -20, -1, 1, -33, -492, 1784, 1784, -492, -33, 1, 1, -54, -1413, 9288, 17840, -9288, -1413, 54, 1, 1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1
Offset: 0
Row polynomial for n=4: p(4,x) = 1 - 7*x - 16*x^2 + 7*x^3 + x^4. x*p(4,x) is the numerator of the g.f. for A056572(n), n >= 0 (fifth power of Fibonacci numbers) {0,1,1,32,243,...}. The denominator polynomial is Sum_{m=0..6} A055870(6,m)*x^m (n=6 row polynomial of signed fibonomial triangle).
From _Roger L. Bagula_, Apr 03 2010: (Start)
1;
1, -1;
1, -2, -1;
1, -4, -4, 1;
1, -7, -16, 7, 1;
1, -12, -53, 53, 12, -1;
1, -20, -166, 318, 166, -20, -1;
1, -33, -492, 1784, 1784, -492, -33, 1;
1, -54, -1413, 9288, 17840, -9288, -1413, 54, 1;
1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1; (End)
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 84, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
-
A056588 := proc(n,k)
if k = 0 then
1;
elif k >n then
0;
else
combinat[fibonacci](k+1)^(n+1)+add( A055870(n+2, j)*(combinat[fibonacci](k+1-j)^(n+1)), j=1..k) ;
end if;
end proc: # R. J. Mathar, Jun 14 2015
-
p[x_, n_] = Sum[(((1 + Sqrt[5])^k - (1 - Sqrt[5])^k)/(2^k*Sqrt[5]))^n*x^k, {k, 0, Infinity}];
a = Table[CoefficientList[FullSimplify[Numerator[p[ x, n]]/x], x]/2^(1 + Floor[n/2]), {n, 1, 10}];
Table[a[[n]]/a[[n]][[1]], {n, 1, 10}];
Flatten[%] (* Roger L. Bagula, Apr 03 2010 *)
-
S(n, k) = (-1)^floor((k+1)/2)*(prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j)));
T(n, k) = sum(j=0, k, fibonacci(k+1-j)^(n+1) * S(n+2, j));
tabl(m) = for (n=0, m, for (k=0, n, print1(T(n, k), ", ")); print);
tabl(9); \\ Tony Foster III, Aug 20 2018
A056572
Fifth power of Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 1, 32, 243, 3125, 32768, 371293, 4084101, 45435424, 503284375, 5584059449, 61917364224, 686719856393, 7615646045657, 84459630100000, 936668172433707, 10387823949447757, 115202670521319424, 1277617458486664901
Offset: 0
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Vincenzo Librandi, Table of n, a(n) for n = 0..135
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop, Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp 4623-4627.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (8,40,-60,-40,8,1).
A001655
Fibonomial coefficients: a(n) = F(n+1) * F(n+2) * F(n+3)/2, where F() = Fibonacci numbers A000045.
Original entry on oeis.org
1, 3, 15, 60, 260, 1092, 4641, 19635, 83215, 352440, 1493064, 6324552, 26791505, 113490195, 480752895, 2036500788, 8626757644, 36543528780, 154800876945, 655747029795, 2777789007071, 11766903040368, 49845401197200, 211148507782800, 894439432403425
Offset: 0
G.f. = 1 + 3*x + 15*x^2 + 60*x^3 + 260*x^4 + 1092*x^5 + 4641*x^6 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers cubed, Fib. Q. 58:5 (2020) 128-134.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Ronald Orozco López, Generating Functions of Generalized Simplicial Polytopic Numbers and (s,t)-Derivatives of Partial Theta Function, arXiv:2408.08943 [math.CO], 2024. See p. 13.
- Ronald Orozco López, Simplicial d-Polytopic Numbers Defined on Generalized Fibonacci Polynomials, arXiv:2501.11490 [math.CO], 2025. See p. 10.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- David Treeby, Further Physical Derivations of Fibonacci Summations, Fibonacci Quart. 54 (2016), no. 4, 327-334.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
-
[Fibonacci(n+3)*Fibonacci(n+2)*Fibonacci(n+1)/2: n in [0..30]]; // Vincenzo Librandi, May 09 2016
-
A001655:=1/(z**2-z-1)/(z**2+4*z-1); # Simon Plouffe in his 1992 dissertation.
-
Table[(Fibonacci[n+3]*Fibonacci[n+2]*Fibonacci[n+1])/2, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
LinearRecurrence[{3, 6, -3, -1}, {1, 3, 15, 60}, 25] (* Jean-François Alcover, Sep 23 2017 *)
-
b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j)); vector(20, n, b(n-1, 3)) \\ Joerg Arndt, May 08 2016
A056571
Fourth power of Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 1, 16, 81, 625, 4096, 28561, 194481, 1336336, 9150625, 62742241, 429981696, 2947295521, 20200652641, 138458410000, 949005240561, 6504586067281, 44583076827136, 305577005139121, 2094455819300625, 14355614096087056
Offset: 0
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 31.
- Donald E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop and Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp. 4623-4627.
- Vincenzo Librandi, Table of n, a(n) for n = 0..151
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059. Mathematical Reviews, MR2980853. Zentralblatt MATH, Zbl 1255.05004.
- Alfred Brousseau, A sequence of power formulas, Fib. Quart., Vol. 6, No. 1 (1968), pp. 81-83.
- Andrej Dujella, A bijective proof of Riordan's theorem on powers of Fibonacci numbers, Discrete Math., Vol. 199, No. 1-3 (1999), pp. 217-220. MR1675924 (99k:05016).
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers cubed, Fib. Q. 58:5 (2020) 128-134.
- Hideyuki Ohtsuka, Problem N-1220, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 55, No. 4 (2017), p. 368; Gelin-Cesàro Identity Yields a Telescoping Product, Solution to Problem H-790 by Ramya Dutta, ibid., Vol. 56, No. 4 (2018), p. 372.
- John Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J., Vol. 29, No. 1 (1962), pp. 5-12.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1).
A001656
Fibonomial coefficients.
Original entry on oeis.org
1, 5, 40, 260, 1820, 12376, 85085, 582505, 3994320, 27372840, 187628376, 1285992240, 8814405145, 60414613805, 414088493560, 2838203264876, 19453338487220, 133335155341960, 913892777190965, 6263914210945105
Offset: 0
G.f. = 1 + 5*x + 40*x^2 + 260*x^3 + 1820*x^4 + 12376*x^5 + 85085*x^6 + ... .
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Alfred Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 17.
- Nadia Heninger, E. M. Rains, and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Thomas Koshy, Infinite Sums Involving Jacobsthal Polynomial Products Revisited, The Fibonacci Quarterly, Vol. 60, No. 1 (2022), pp. 3-14.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1).
-
with (combinat): a:=n->1/6*fibonacci(n)*fibonacci(n+1)*fibonacci(n+2)*fibonacci(n+3): seq(a(n), n=1..18); # Zerinvary Lajos, Oct 07 2007
A001656:=-1/(z-1)/(z**2-7*z+1)/(z**2+3*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
-
Table[(Fibonacci[n+3]*Fibonacci[n+2]*Fibonacci[n+1]*Fibonacci[n])/6,{n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
LinearRecurrence[{5,15,-15,-5,1},{1,5,40,260,1820},20] (* Vincenzo Librandi, Aug 02 2012 *)
Times@@@Partition[Fibonacci[Range[30]],4,1]/6 (* Harvey P. Dale, Oct 13 2016 *)
-
b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
vector(20, n, b(n-1, 4)) \\ Joerg Arndt, May 08 2016
Comments
Examples
References
Links
Crossrefs
Programs
Haskell
Magma
Maple
Mathematica
PARI
PARI
Python
Python
Formula
Extensions