cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A103323 Square array T(n,k) read by antidiagonals: powers of Fibonacci numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 5, 1, 1, 16, 27, 25, 8, 1, 1, 32, 81, 125, 64, 13, 1, 1, 64, 243, 625, 512, 169, 21, 1, 1, 128, 729, 3125, 4096, 2197, 441, 34, 1, 1, 256, 2187, 15625, 32768, 28561, 9261, 1156, 55, 1, 1, 512, 6561, 78125, 262144, 371293, 194481, 39304, 3025, 89
Offset: 1

Views

Author

Ralf Stephan, Feb 02 2005

Keywords

Comments

Number of ways to create subsets S(1), S(2),..., S(k-1) such that S(1) is in [n] and for 2<=i<=k-1, S(i) is in [n] and S(i) is disjoint from S(i-1).

Examples

			Square array T(n,k) begins:
  1, 1,  2,   3,     5,      8, ...
  1, 1,  4,   9,    25,     64, ...
  1, 1,  8,  27,   125,    512, ...
  1, 1, 16,  81,   625,   4096, ...
  1, 1, 32, 243,  3125,  32768, ...
  1, 1, 64, 729, 15625, 262144, ...
  ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 138.

Crossrefs

Main diagonal gives A100399.
Cf. A244003.

Programs

  • Maple
    A:= (n, k)-> (<<1|1>, <1|0>>^n)[1, 2]^k:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    T[n_, k_] := Fibonacci[k]^n; Table[T[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 16 2015 *)
  • PARI
    T(n,k)=fibonacci(k)^n

Formula

T(n, k) = A000045(k)^n, n, k > 0.
T(n, k) = Sum[i_1>=0, Sum[i_2>=0, ... Sum[i_{k-1}>=0, C(n, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{k-2}, i_{k-1}) ] ... ]].

A005969 Sum of fourth powers of Fibonacci numbers.

Original entry on oeis.org

1, 2, 18, 99, 724, 4820, 33381, 227862, 1564198, 10714823, 73457064, 503438760, 3450734281, 23651386922, 162109796922, 1111115037483, 7615701104764, 52198777931900, 357775783071021, 2452231602371646, 16807845698458702
Offset: 1

Views

Author

Keywords

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 19.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(1/25)*(Fibonacci(4*n+2)-(-1)^n*4*Fibonacci(2*n+1)+6*n+3): n in [1..25]];// Vincenzo Librandi, Jun 02 2017
  • Maple
    with(combinat): l[0] := 0: for i from 1 to 50 do l[i] := l[i-1]+fibonacci(i)^4; printf(`%d,`,l[i]) od: # James Sellers, May 29 2000
    A005969:=(z+1)*(z**2-5*z+1)/(z**2-7*z+1)/(z**2+3*z+1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation, offset zero
  • Mathematica
    CoefficientList[Series[(1+x)*(x^2-5*x+1)/((x^2+3*x+1)*(x^2-7*x+1)*(x- 1)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 02 2017 *)
    LinearRecurrence[{6,10,-30,10,6,-1}, {1,2,18,99,724,4820}, 30] (* G. C. Greubel, Jan 17 2018 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,6,10,-30,10,6]^n*[0;1;2;18;99;724])[1,1] \\ Charles R Greathouse IV, Sep 28 2015
    

Formula

a(n) = Sum_{i=0..n} A056571(i).
G.f.: x*(1+x)*(x^2-5*x+1)/ ( (x^2+3*x+1)*(x^2-7*x+1)*(x-1)^2 ). - Ralf Stephan, Apr 23 2004
a(n) = (1/25)*(F(4n+2)-(-1)^n*4*F(2n+1)+6n+3) where F(n)=A000045(n). - Benoit Cloitre, Sep 13 2004. [Corrected by David Lambert (dave.lambert(AT)comcast.net), Mar 28 2008]

Extensions

More terms from James Sellers, May 29 2000

A056573 Sixth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 64, 729, 15625, 262144, 4826809, 85766121, 1544804416, 27680640625, 496981290961, 8916100448256, 160005726539569, 2871098559212689, 51520374361000000, 924491486192068809, 16589354847268067929
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

A divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Sixth row of array A103323.

Programs

Formula

a(n) = F(n)^6, where F(n) = A000045(n).
G.f.: x*p(6, x)/q(6, x) with p(6, x) := sum_{m=0..5} A056588(5, m)*x^m = (1-x)*(1 - 11*x - 64*x^2 - 11*x^3 + x^4) and q(6, x) := sum_{m=0..7} A055870(7, m)*x^m = (1+x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2) (denominator factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..7} A055870(7, m)*a(n-m) = 0, n >= 7; inputs: a(n), n=0..6. a(n) = 13*a(n-1) + 104*a(n-2) - 260*a(n-3) - 260*a(n-4) + 104*a(n-5) + 13*a(n-6) - a(n-7).
From Gary Detlefs, Jan 07 2013: (Start)
a(n) = (F(3*n)^2 - (-1)^n*6*F(n)*F(3*n) + 9*F(n)^2)/25.
a(n) = (10*F(n)^3*F(3*n) - F(3*n)^2 + 9*F(n)^2)/25. (End)
a(n+1) = 2*[2*F(n+1)^2-(-1)^n]^3+3*F(n)^2*F(n+1)^2*F(n+2)^2-[F(n)^6+F(n+2)^6] = {Sum(0 <= j <= [n/2]; binomial(n-j, j))}^6, for n (this is Theorem 2.2 (vi) of Azarian's second paper in the references for this sequence). - Mohammad K. Azarian, Jun 29 2015

A031923 Let r and s be consecutive Fibonacci numbers. Sequence is r^4, r^3 s, r^2 s^2, and r s^3.

Original entry on oeis.org

1, 2, 4, 8, 16, 24, 36, 54, 81, 135, 225, 375, 625, 1000, 1600, 2560, 4096, 6656, 10816, 17576, 28561, 46137, 74529, 120393, 194481, 314874, 509796, 825384, 1336336, 2161720, 3496900, 5656750, 9150625, 14807375, 23961025, 38773295, 62742241, 101515536
Offset: 1

Views

Author

Keywords

Comments

Two consecutive Fibonacci numbers are coprime. This sequence satisfies a 14th-order linear difference equation. Note that it is the fourth sequence in the sequences that begin with the Fibonacci numbers, A006498, and A006500. Subsequent sequences will have orders 22, 32, and 44. - T. D. Noe, Mar 05 2012
Also the number of subsets of the set {1,2,...,n-1} which do not contain two elements whose difference is 4. - David Nacin, Mar 07 2012

Examples

			Since F_5 = 5 and F_6 = 8 are consecutive Fibonacci numbers, 8^4 = 4096, 8^3*5 = 2560, 8^2*5^2 = 1600, 8*5^3 = 1000, and 5^4 = 625 are in the sequence.
The number 3^3*8 = 216 is not in the sequence since 3 and 8 are not consecutive.
If n = 6 then this gives the number of subsets of {1,...,5} not containing both 1 and 5. There are 2^3 subsets containing 1 and 5, giving us 2^5 - 2^3 = 24. Thus a(5) = 24. - _David Nacin_, Mar 07 2012
		

Crossrefs

Programs

  • Maple
    A031923 := proc(n)
        local n0,i,r,s,m ;
        n0 := n-1 ;
        i := floor(n0/4) ;
        r := combinat[fibonacci](i+2) ;
        s := combinat[fibonacci](i+3) ;
        m := modp(n0,4) ;
        r^(4-m)*s^m ;
    end proc:
    seq(A031923(n),n=1..50) ; # R. J. Mathar, Jan 23 2022
  • Mathematica
    f = Fibonacci[Range[12]]; m = Most[f]; r = Rest[f]; Union[m^4, m^3 r, m^2 r^2, m r^3] (* T. D. Noe, Mar 05 2012 *)
    LinearRecurrence[{1, 1, 0, -2, 2, 2, 0, 2, -2, -2, 0, 1, -1, -1}, {1, 2, 4, 8, 16, 24, 36, 54, 81, 135, 225, 375, 625, 1000}, 40] (* T. D. Noe, Mar 05 2012 *)
    Table[Fibonacci[Floor[n/4] + 3]^Mod[n, 4]*Fibonacci[Floor[n/4] + 2]^(4 - Mod[n, 4]), {n, 0, 40}] (* David Nacin, Mar 07 2012 *)
    cfn[{a_,b_}]:={a^4,a^3 b,a^2 b^2,a b^3}; Flatten[cfn/@Partition[ Fibonacci[ Range[20]],2,1]]//Union (* Harvey P. Dale, Feb 03 2019 *)
  • PARI
    for(m=2,10,r=fibonacci(m);s=fibonacci(m+1);print(r^4," ",r^3*s," ",r^2*s^2," ",r*s^3)) \\ Michael B. Porter, Mar 04 2012
    
  • Python
    def a(n, adict={0:0, 1:0, 2:0, 3:0, 4:0, 5:4, 6:15, 7:37, 8:87, 9:200}):
        if n in adict:
            return adict[n]
        adict[n]=3*a(n-1)-2*a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-2*a(n-6)-4*a(n-7)-a(n-8)+a(n-9)+2*a(n-10)
        return adict[n] # David Nacin, Mar 07 2012

Formula

a(n) = F(floor((n-1)/4) + 3)^(n-1 mod 4)*F(floor((n-1)/4) + 2)^(4 - (n-1 mod 4)) where F(n) is the n-th Fibonacci number. - David Nacin, Mar 07 2012
a(n) = a(n-1) + a(n-2) - 2*a(n-4) + 2*a(n-5) + 2*a(n-6) + 2*a(n-8) - 2*a(n-9) - 2*a(n-10) + a(n-12) - a(n-13) - a(n-14). - David Nacin, Mar 07 2012
G.f.: x*(2 + 2*x + 2*x^2 + 4*x^3 + 4*x^4 - 2*x^6 - 1*x^7 - 4*x^8 - 3*x^9 - x^10 - x^11 - 2*x^12 - x^13)/((1 - x)*(1 + x)*(1 + x^2)*(1 - x - x^2)*(1 + 3*x^4 + x^8)). - David Nacin, Mar 08 2012
a(4*k-3) = F(k+1)^4, a(4*k-2) = F(k+1)^3*F(k+2), a(4*k-1) = F(k+1)^2*F(k+2)^2, a(4*k) = F(k+1)*F(k+2)^3, k >= 1, where F = A000045. - Jianing Song, Feb 06 2019
a(4n+1)= A056571(n+2). a(4n+3)=A197424(n). - R. J. Mathar, Jan 23 2022

Extensions

a(19) changed from 10416 to 10816 by David Nacin, Mar 04 2012

A056574 Seventh power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 128, 2187, 78125, 2097152, 62748517, 1801088541, 52523350144, 1522435234375, 44231334895529, 1283918464548864, 37281334283719577, 1082404156823183753, 31427428360210000000, 912473096871571914483
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

A divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Seventh row of array A103323.

Programs

Formula

a(n) = F(n)^7, where F(n) = A000045(n).
G.f.: x*p(7, x)/q(7, x) with p(7, x) := sum_{m=0..6} A056588(6, m)*x^m = 1 - 20*x - 166*x^2 + 318*x^3 + 166*x^4 - 20*x^5 - x^6 and q(7, x) := sum_{m=0..8} A055870(8, m)*x^m = (1 + x - x^2)*(1 - 4*x - x^2)*(1 + 11*x - x^2)*(1 - 29*x - x^2) (factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..8} A055870(8, m)*a(n-m) = 0, n >= 8; inputs: a(n), n=0..7. a(n) = 21*a(n-1) + 273*a(n-2) - 1092*a(n-3) - 1820*a(n-4) + 1092*a(n-5) + 273*a(n-6) - 21*a(n-7) - a(n-8).
a(n+1) = F(n)^7+F(n+1)^7+7*F(n)*F(n+1)*F(n+2)*[2*F(n+1)^2-(-1)^n]^2 = {Sum(0 <= j <= [n/2]; binomial(n-j, j))}^7, for n>=0 (This is Theorem 2.3 (iv) of Azarian's second paper in the references for this sequence). - Mohammad K. Azarian, Jun 29 2015

A248822 Number of integers k^4 that divide 1!*2!*3!*...*n!.

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 10, 36, 64, 200, 432, 630, 1088, 4800, 7590, 32448, 47040, 114240, 164160, 835920, 1302840, 4804800, 7091712, 25243920, 39168000, 171555840, 320973840, 667447200, 1113944832, 3338108928, 5181926400, 19372953600, 31804416000, 132562944000
Offset: 1

Views

Author

Clark Kimberling, Oct 15 2014

Keywords

Examples

			a(6) counts these integers k^4 that divide 24883200:  1^4, 2^4, 4^4, 8^4, 6^4, 12^4, 24^4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(i[2]*x^numtheory[pi](i[1]),
          i=ifactors(n)[2])+`if`(n=1, 0, b(n-1))
        end:
    c:= proc(n) option remember; b(n)+`if`(n=1, 0, c(n-1)) end:
    a:= n->(p->mul(iquo(coeff(p, x, i), 4)+1, i=1..degree(p)))(c(n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Oct 16 2014
  • Mathematica
    z = 40; p[n_] := Product[k!, {k, 1, n}];
    f[n_] := f[n] = FactorInteger[p[n]];
    r[m_, x_] := r[m, x] = m*Floor[x/m]
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    t[m_, n_] := Apply[Times, 1 + r[m, v[n]]/m]
    m = 4; Table[t[m, n], {n, 1, z}] (* A248822 *)

A056585 Eighth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 256, 6561, 390625, 16777216, 815730721, 37822859361, 1785793904896, 83733937890625, 3936588805702081, 184884258895036416, 8686550888106661441, 408066367122340274881, 19170731299728100000000
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

A divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Programs

Formula

a(n) = F(n)^8, F(n)=A000045(n).
G.f.: x*p(8, x)/q(8, x) with p(8, x) := sum_{m=0..7} A056588(7, m)*x^m = (1+x)*(1 - 34*x - 458*x^2 + 2242*x^3 - 458*x^4 - 34*x^5 + x^6) and q(8, x) := sum_{m=0..9} A055870(9, m)*x^m = (1-x)*(1 + 3*x + x^2)*(1 - 7*x + x^2)*(1 + 18*x + x^2)*(1 - 47*x + x^2) (denominator factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..9} A055870(9, m)*a(n-m) = 0, n >= 9; inputs: a(n), n=0..8. a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
a(n+1) = 8*F(n)^2*F(n+1)^2*[F(n)^4+F(n+1)^4+4*F(n)^2*F(n+1)^2+3*F(n)*F(n+1)*F(n+2)]-[F(n)^8+F(n+2)^8]+2*[2*F(n+1)^2-(-1)^n]^4 = {Sum(0 <= j <= [n/2]; binomial(n-j, j))}^8, for n>=0 (This is Theorem 2.2 (vii) of Azarian's second paper in the references for this sequence). - Mohammad K. Azarian, Jun 29 2015

A244855 a(n) = Fibonacci(n)^4-1.

Original entry on oeis.org

0, 0, 15, 80, 624, 4095, 28560, 194480, 1336335, 9150624, 62742240, 429981695, 2947295520, 20200652640, 138458409999, 949005240560, 6504586067280, 44583076827135, 305577005139120, 2094455819300624, 14355614096087055, 98394841894789440, 674408281676875200
Offset: 1

Views

Author

Michel Lagneau, Jul 25 2014

Keywords

Comments

For n > 1, a(n) = F(n-2)*F(n-1)*F(n+1)*F(n+2) with the property F(n-2)+F(n-1)+ F(n+1)+ F(n+2) = F(n) + F(n+3) = 2*F(n+2).
F(n)^2 - 1 = F(n-1)*F(n+1) if n odd, and F(n)^2 - 1 = F(n-2)*F(n+2)if n even ;
F(n)^2 + 1 = F(n-2)*F(n+2) if n odd, and F(n)^2 + 1 = F(n-1)*F(n+1) if n even, hence the product (F(n)^2 - 1)*(F(n)^2 + 1)= F(n-2)*F(n-1)*F(n+1)*F(n+2).

Examples

			a(5) = Fibonacci(5)^4-1 = 624 = 3*8*2*13 because Fibonacci(5)^2-1=3*8 and Fibonacci(5)^2+1 = 2*13.
		

Crossrefs

Programs

  • Magma
    [Fibonacci(n)^4-1: n in [1..30]]; // Vincenzo Librandi, Jul 26 2014
    
  • Maple
    with(numtheory):with(combinat, fibonacci):nn:=30:for i from 1 to nn do:x:=fibonacci(i)^4-1: printf(`%d, `, x):od:
  • Mathematica
    Table[(Fibonacci[n]^4 - 1), {n, 40}] (* Vincenzo Librandi, Jul 26 2014 *)
    LinearRecurrence[{5,15,-15,-5,1},{0,0,15,80,624},30] (* Harvey P. Dale, Dec 01 2019 *)
  • PARI
    a(n) = fibonacci(n)^4-1; \\ Michel Marcus, Oct 20 2020

Formula

From R. J. Mathar, Nov 02 2014: (Start)
G.f.: x^3*(-15-5*x+x^2) / ( (x-1)*(x^2-7*x+1)*(x^2+3*x+1) ).
a(n) = A056571(n)-1. (End)
Sum_{n>=3} 1/a(n) = 35/18 - 5*sqrt(5)/6 = 25/9 - 5*phi/3, where phi is the golden ratio (A001622). - Amiram Eldar, Oct 20 2020
Sum_{n>=3} (-1)^(n+1)/a(n) = 1/18 (Ohtsuka, 2015). - Amiram Eldar, Dec 09 2021

A056586 Ninth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 512, 19683, 1953125, 134217728, 10604499373, 794280046581, 60716992766464, 4605366583984375, 350356403707485209, 26623333280885243904, 2023966356928852115753, 153841020405122283630137
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Programs

Formula

a(n) = F(n)^9, F(n)=A000045(n).
G.f.: x*p(9, x)/q(9, x) with p(9, x) := sum_{m=0..8} A056588(8, m)*x^m = 1 - 54*x - 1413*x^2 + 9288*x^3 + 17840*x^4 - 9288*x^5 - 1413*x^6 + 54*x^7 + x^8 and q(9, x) := sum_{m=0..10} A055870(10, m)*x^m = (1 - x - x^2)*(1 + 4*x - x^2)*(1 - 11*x - x^2)*(1 + 29*x - x^2)*(1 - 76*x - x^2) (factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..10} A055870(10, m)*a(n-m) = 0, n >= 10; inputs: a(n), n=0..9. a(n) = 55*a(n-1) + 1870*a(n-2) - 19635*a(n-3) - 85085*a(n-4) + 136136*a(n-5) + 85085*a(n-6) - 19635*a(n-7) - 1870*a(n-8) + 55*a(n-9) + a(n-10).

A056587 Tenth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 1024, 59049, 9765625, 1073741824, 137858491849, 16679880978201, 2064377754059776, 253295162119140625, 31181719929966183601, 3833759992447475122176, 471584161164422542970449
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Programs

Formula

a(n) = F(n)^10, F(n)=A000045(n).
G.f.: x*p(10, x)/q(10, x) with p(10, x) := sum_{m=0..9} A056588(9, m)*x^m = (1-x)*(1 - 87*x - 4047*x^2 + 42186*x^3 + 205690*x^4 + 42186*x^5 - 4047*x^6 - 87*x^7 + x^8) and q(10, x) := sum_{m=0..11} A055870(11, m)*x^m = (1+x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)*(1 + 47*x + x^2)*(1 - 123*x + x^2) (denominator factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..11} A055870(11, m)*a(n-m) = 0, n >= 11; inputs: a(n), n=0..10. a(n) = 89*a(n-1) + 4895*a(n-2) - 83215*a(n-3) - 582505*a(n-4) + 1514513*a(n-5) + 1514513*a(n-6) - 582505*a(n-7) -83215*a(n-8) + 4895*a(n-9) + 89*a(n-10) - a(n-11).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 17 2001
Showing 1-10 of 12 results. Next