A056588
Coefficient triangle of certain polynomials.
Original entry on oeis.org
1, 1, -1, 1, -2, -1, 1, -4, -4, 1, 1, -7, -16, 7, 1, 1, -12, -53, 53, 12, -1, 1, -20, -166, 318, 166, -20, -1, 1, -33, -492, 1784, 1784, -492, -33, 1, 1, -54, -1413, 9288, 17840, -9288, -1413, 54, 1, 1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1
Offset: 0
Row polynomial for n=4: p(4,x) = 1 - 7*x - 16*x^2 + 7*x^3 + x^4. x*p(4,x) is the numerator of the g.f. for A056572(n), n >= 0 (fifth power of Fibonacci numbers) {0,1,1,32,243,...}. The denominator polynomial is Sum_{m=0..6} A055870(6,m)*x^m (n=6 row polynomial of signed fibonomial triangle).
From _Roger L. Bagula_, Apr 03 2010: (Start)
1;
1, -1;
1, -2, -1;
1, -4, -4, 1;
1, -7, -16, 7, 1;
1, -12, -53, 53, 12, -1;
1, -20, -166, 318, 166, -20, -1;
1, -33, -492, 1784, 1784, -492, -33, 1;
1, -54, -1413, 9288, 17840, -9288, -1413, 54, 1;
1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1; (End)
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 84, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
-
A056588 := proc(n,k)
if k = 0 then
1;
elif k >n then
0;
else
combinat[fibonacci](k+1)^(n+1)+add( A055870(n+2, j)*(combinat[fibonacci](k+1-j)^(n+1)), j=1..k) ;
end if;
end proc: # R. J. Mathar, Jun 14 2015
-
p[x_, n_] = Sum[(((1 + Sqrt[5])^k - (1 - Sqrt[5])^k)/(2^k*Sqrt[5]))^n*x^k, {k, 0, Infinity}];
a = Table[CoefficientList[FullSimplify[Numerator[p[ x, n]]/x], x]/2^(1 + Floor[n/2]), {n, 1, 10}];
Table[a[[n]]/a[[n]][[1]], {n, 1, 10}];
Flatten[%] (* Roger L. Bagula, Apr 03 2010 *)
-
S(n, k) = (-1)^floor((k+1)/2)*(prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j)));
T(n, k) = sum(j=0, k, fibonacci(k+1-j)^(n+1) * S(n+2, j));
tabl(m) = for (n=0, m, for (k=0, n, print1(T(n, k), ", ")); print);
tabl(9); \\ Tony Foster III, Aug 20 2018
A103323
Square array T(n,k) read by antidiagonals: powers of Fibonacci numbers.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 5, 1, 1, 16, 27, 25, 8, 1, 1, 32, 81, 125, 64, 13, 1, 1, 64, 243, 625, 512, 169, 21, 1, 1, 128, 729, 3125, 4096, 2197, 441, 34, 1, 1, 256, 2187, 15625, 32768, 28561, 9261, 1156, 55, 1, 1, 512, 6561, 78125, 262144, 371293, 194481, 39304, 3025, 89
Offset: 1
Square array T(n,k) begins:
1, 1, 2, 3, 5, 8, ...
1, 1, 4, 9, 25, 64, ...
1, 1, 8, 27, 125, 512, ...
1, 1, 16, 81, 625, 4096, ...
1, 1, 32, 243, 3125, 32768, ...
1, 1, 64, 729, 15625, 262144, ...
...
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 138.
-
A:= (n, k)-> (<<1|1>, <1|0>>^n)[1, 2]^k:
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Jun 17 2014
-
T[n_, k_] := Fibonacci[k]^n; Table[T[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 16 2015 *)
-
T(n,k)=fibonacci(k)^n
A098531
Sum of fifth powers of first n Fibonacci numbers.
Original entry on oeis.org
0, 1, 2, 34, 277, 3402, 36170, 407463, 4491564, 49926988, 553211363, 6137270812, 68054635036, 754774491429, 8370420537086, 92830050637086, 1029498223070793, 11417322172518550, 126619992693837974, 1404237451180502875, 15573231068749231000
Offset: 0
-
[(&+[Fibonacci(k)^5:k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 17 2018
-
Accumulate[Fibonacci[Range[0,20]]^5] (* Harvey P. Dale, Jan 14 2011 *)
CoefficientList[Series[x*(1-7*x-16*x^2+7*x^3+x^4)/((1-x)*(1+4*x-x^2)*(1-x-x^2)*(1-11*x-x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 13 2012 *)
-
a(n)=sum(i=0,n,fibonacci(i)^5)
Formula corrected, with the author's consent, by
Wolfdieter Lang, Oct 12 2012
A056573
Sixth power of Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 1, 64, 729, 15625, 262144, 4826809, 85766121, 1544804416, 27680640625, 496981290961, 8916100448256, 160005726539569, 2871098559212689, 51520374361000000, 924491486192068809, 16589354847268067929
Offset: 0
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Vincenzo Librandi, Table of n, a(n) for n = 0..124
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876. Mathematical Reviews, MR2959001. Zentralblatt MATH, Zbl 1255.05003.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059. Mathematical Reviews, MR2980853. Zentralblatt MATH, Zbl 1255.05004.
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (13,104,-260,-260,104,13,-1).
-
[Fibonacci(n)^6: n in [0..20]]; // Vincenzo Librandi, Jun 04 2011
-
with(combinat): A056573:=n->fibonacci(n)^6: seq(A056573(n), n=0..30); # Wesley Ivan Hurt, Jun 29 2015
-
f[n_]:=Fibonacci[n]^6; lst={}; Do[AppendTo[lst,f[n]],{n,0,5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
Fibonacci[Range[0,20]]^6 (* Harvey P. Dale, Sep 21 2024 *)
-
a(n)=fibonacci(n)^6 \\ Charles R Greathouse IV, Jun 29 2015
A056574
Seventh power of Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 1, 128, 2187, 78125, 2097152, 62748517, 1801088541, 52523350144, 1522435234375, 44231334895529, 1283918464548864, 37281334283719577, 1082404156823183753, 31427428360210000000, 912473096871571914483
Offset: 0
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Vincenzo Librandi, Table of n, a(n) for n = 0..115
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876. Mathematical Reviews, MR2959001. Zentralblatt MATH, Zbl 1255.05003.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059. Mathematical Reviews, MR2980853. Zentralblatt MATH, Zbl 1255.05004.
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (21,273,-1092,-1820,1092,273,-21,-1).
A056585
Eighth power of Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 1, 256, 6561, 390625, 16777216, 815730721, 37822859361, 1785793904896, 83733937890625, 3936588805702081, 184884258895036416, 8686550888106661441, 408066367122340274881, 19170731299728100000000
Offset: 0
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Vincenzo Librandi, Table of n, a(n) for n = 0..107
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876. Mathematical Reviews, MR2959001. Zentralblatt MATH, Zbl 1255.05003.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059. Mathematical Reviews, MR2980853. Zentralblatt MATH, Zbl 1255.05004.
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (34,714,-4641,-12376,12376,4641,-714,-34,1).
A215044
a(n) = F(2*n)^5 with F=A000045 (Fibonacci numbers).
Original entry on oeis.org
0, 1, 243, 32768, 4084101, 503284375, 61917364224, 7615646045657, 936668172433707, 115202670521319424, 14168993617568728125, 1742671044798615789551, 214334370099947863277568, 26361384861716322814590193
Offset: 0
A055519
a(n) = 9*a(n-1) + 33*a(n-2) - 76*a(n-3) - 33*a(n-4) + 9*a(n-5) + a(n-6), a(0)=a(1)=1, a(2)=2, a(3)=35, a(4)=312, a(5)=3779.
Original entry on oeis.org
1, 1, 2, 35, 312, 3779, 41590, 474169, 5342808, 60450145, 682988978, 7720432691, 87256315920, 986227664411, 11146765278382, 125986353493225, 1423957841588232, 16094263592763889, 181905138292910570, 2055979904686591259, 23237679087969620328, 262643489044489470155
Offset: 0
-
LinearRecurrence[{9,33,-76,-33,9,1},{1,1,2,35,312,3779},20] (* Harvey P. Dale, Oct 20 2021 *)
A217471
Partial sum of fifth power of the even-indexed Fibonacci numbers.
Original entry on oeis.org
0, 1, 244, 33012, 4117113, 507401488, 62424765712, 7678070811369, 944346243245076, 116147016764564500, 14285140634333292625, 1756956185432949082176, 216091326285380812359744, 26577476188001703626949937
Offset: 0
a(2) = 244 = 2*(8-3)/5 - 610/20 + (832040-6765)/55^2 - 7/22.
a(2) = 244 = (1/11)*5^5 - (15/44)*5^3 + (25/44)*5 - 7/22.
a(2) = 244 = (5-1)^2*(4*5^3 + 8*5^2 - 3*5 - 14)/44
= (4*5^3 + 8*5^2 - 3*5 - 14)*(4/11).
- G. C. Greubel, Table of n, a(n) for n = 0..475
- R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, The Fibonacci Quart. 46/47 (2008/2009), no. 4, 312-315.
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- H. Prodinger, On a sum of Melham and its variants, The Fibonacci Quart. 46/47 (2008/2009), no. 3, 207-215.
-
Table[Sum[Fibonacci[2*k]^5, {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Apr 12 2017 *)
Accumulate[Fibonacci[Range[0,30,2]]^5] (* Harvey P. Dale, Jun 30 2025 *)
-
a(n) = sum(k=1, n, fibonacci(2*k)^5); \\ Michel Marcus, Feb 29 2016
A056586
Ninth power of Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 1, 512, 19683, 1953125, 134217728, 10604499373, 794280046581, 60716992766464, 4605366583984375, 350356403707485209, 26623333280885243904, 2023966356928852115753, 153841020405122283630137
Offset: 0
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Vincenzo Librandi, Table of n, a(n) for n = 0..101
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (55,1870,-19635,-85085,136136,85085,-19635,-1870,55,1).
Showing 1-10 of 15 results.
Comments