A056589
Third column sequence of unsigned triangle A056588.
Original entry on oeis.org
1, 4, 16, 53, 166, 492, 1413, 3960, 10912, 29689, 80026, 214196, 570289, 1512300, 3998160, 10545741, 27766942, 73012060, 191785165, 503378480, 1320425536, 3462057009, 9074076786, 23776857828, 62289901081, 163159711492
Offset: 0
A056592
Row sums of signed triangle A056588.
Original entry on oeis.org
1, 0, -2, -6, -14, 0, 278, 2520, 15016, 0, -2172632, -53222400, -835765304, 0, 851104689248, 55249242048000, 2288258540319136, 0, -16212819419809777952, -2773508758631170560000, -302332135138133434911104, 0, 14824259801049378686209605248
Offset: 0
A056593
Row sums of unsigned triangle A056588.
Original entry on oeis.org
1, 2, 4, 10, 32, 132, 692, 4620, 39352, 427572, 5918992, 104375880, 2344751912, 67092113592, 2444702271152, 113425536387240, 6700361921561152, 503909247633965712, 48243317287320644752, 5879293173259041034800
Offset: 0
A056590
Fourth column sequence of triangle A056588.
Original entry on oeis.org
1, 7, 53, 318, 1784, 9288, 46233, 221859, 1036585, 4742650, 21350264, 94895016, 417562385, 1822824255, 7907350365, 34130697462, 146735898760, 628870859320, 2688466352825, 11470754475675, 48865641344081, 207913415718642
Offset: 0
A056591
Fifth column sequence of triangle A056588.
Original entry on oeis.org
1, 12, 166, 1784, 17840, 163504, 1418549, 11751784, 94002810, 730859800, 5554472496, 41437244784, 304478259625, 2209596042260, 15871463933950, 113044318064744, 799558820643440, 5622796403700080, 39354459839661725
Offset: 0
-
g:= (72*x^9-142*x^8+276*x^7+473*x^6-112*x^5-78*x^3+46*x^2-8*x+1)/((1-x)*(1+2*x)*(1-5*x)*(1+x-x^2)*(1+3*x+x^2)*(1-3*x-9*x^2)*(1-4*x-x^2)*(1-6*x+4*x^2) *(1-7*x+x^2)):
S:= series(g,x,21):
seq(coeff(S,x,i),i=0..20); # Robert Israel, Jul 24 2018
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 16, 7, 1, 1, 12, 53, 53, 12, 1, 1, 20, 166, 318, 166, 20, 1, 1, 33, 492, 1784, 1784, 492, 33, 1, 1, 54, 1413, 9288, 17840, 9288, 1413, 54, 1, 1, 88, 3960, 46233, 163504, 163504, 46233, 3960, 88, 1, 1, 143, 10912, 221859, 1418549, 2616064, 1418549, 221859, 10912, 143, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 7, 16, 7, 1;
1, 12, 53, 53, 12, 1;
1, 20, 166, 318, 166, 20, 1;
1, 33, 492, 1784, 1784, 492, 33, 1;
1, 54, 1413, 9288, 17840, 9288, 1413, 54, 1;
1, 88, 3960, 46233, 163504, 163504, 46233, 3960, 88, 1;
1, 143, 10912, 221859, 1418549, 2616064, 1418549, 221859, 10912, 143, 1;
-
T[n_, 1] := 1; T[n_, n_] := 1; T[n_, k_] := Fibonacci[(n - k + 1)]*T[ n - 1, k - 1] + Fibonacci[k ]*T[n - 1, k];
Table[T[n, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Roger L. Bagula, Sep 09 2008 *)
A255492
Sixth diagonal of triangle in A056588.
Original entry on oeis.org
1, 20, 492, 9288, 163504, 2616064, 39369649, 561744656, 7690052788, 101717711304, 1308089742576, 16431681189504, 202396884008657, 2452192780001276, 29299135239719708, 345967823847659992, 4044638027348853616, 46886410125951835648, 539632277597240357409
Offset: 0
A056570
Third power of Fibonacci numbers (A000045).
Original entry on oeis.org
0, 1, 1, 8, 27, 125, 512, 2197, 9261, 39304, 166375, 704969, 2985984, 12649337, 53582633, 226981000, 961504803, 4073003173, 17253512704, 73087061741, 309601747125, 1311494070536, 5555577996431, 23533806109393, 99690802348032, 422297015640625
Offset: 0
a(4) = 27 because the fourth Fibonacci number is 3 and 3^3 = 27.
a(5) = 125 because the fifth Fibonacci number is 5 and 5^3 = 125.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Vincenzo Librandi, Table of n, a(n) for n = 0..173
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- Andrej Dujella, A bijective proof of Riordan's theorem on powers of Fibonacci numbers, Discrete Math. 199 (1999), no. 1-3, 217--220. MR1675924 (99k:05016).
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers cubed, Fib. Q. 58:5 (2020) 128-134.
- D. Foata and G.-N. Han, Nombres de Fibonacci et polynomes orthogonaux
- Mariana Nagy, Simon R. Cowell and Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019.
- Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop and Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp 4623-4627.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5.
- H. C. Williams and R. K. Guy, Odd and even linear divisibility sequences of order 4, INTEGERS, 2015, #A33.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
-
[Fibonacci(n)^3: n in [0..30]]; // Vincenzo Librandi, Jun 04 2011
-
A056570 := proc(n) combinat[fibonacci](n)^3 ; end proc:
seq(A056570(n),n=0..20) ;
-
Table[Fibonacci[n]^3, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2008 *)
-
a(n)=fibonacci(n)^3 \\ Charles R Greathouse IV, Sep 24 2015
-
concat(0, Vec(x*(1-2*x-x^2)/((1+x-x^2)*(1-4*x-x^2)) + O(x^30))) \\ Colin Barker, Jun 04 2016
-
[fibonacci(n)^3 for n in (0..30)] # G. C. Greubel, Feb 20 2019
A056572
Fifth power of Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 1, 32, 243, 3125, 32768, 371293, 4084101, 45435424, 503284375, 5584059449, 61917364224, 686719856393, 7615646045657, 84459630100000, 936668172433707, 10387823949447757, 115202670521319424, 1277617458486664901
Offset: 0
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Vincenzo Librandi, Table of n, a(n) for n = 0..135
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop, Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp 4623-4627.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (8,40,-60,-40,8,1).
A056571
Fourth power of Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 1, 16, 81, 625, 4096, 28561, 194481, 1336336, 9150625, 62742241, 429981696, 2947295521, 20200652641, 138458410000, 949005240561, 6504586067281, 44583076827136, 305577005139121, 2094455819300625, 14355614096087056
Offset: 0
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 31.
- Donald E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop and Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp. 4623-4627.
- Vincenzo Librandi, Table of n, a(n) for n = 0..151
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059. Mathematical Reviews, MR2980853. Zentralblatt MATH, Zbl 1255.05004.
- Alfred Brousseau, A sequence of power formulas, Fib. Quart., Vol. 6, No. 1 (1968), pp. 81-83.
- Andrej Dujella, A bijective proof of Riordan's theorem on powers of Fibonacci numbers, Discrete Math., Vol. 199, No. 1-3 (1999), pp. 217-220. MR1675924 (99k:05016).
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers cubed, Fib. Q. 58:5 (2020) 128-134.
- Hideyuki Ohtsuka, Problem N-1220, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 55, No. 4 (2017), p. 368; Gelin-Cesàro Identity Yields a Telescoping Product, Solution to Problem H-790 by Ramya Dutta, ibid., Vol. 56, No. 4 (2018), p. 372.
- John Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J., Vol. 29, No. 1 (1962), pp. 5-12.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1).
Showing 1-10 of 17 results.
Comments