A001654 Golden rectangle numbers: F(n) * F(n+1), where F(n) = A000045(n) (Fibonacci numbers).
0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, 33552, 87841, 229970, 602070, 1576239, 4126648, 10803704, 28284465, 74049690, 193864606, 507544127, 1328767776, 3478759200, 9107509825, 23843770274, 62423800998, 163427632719, 427859097160, 1120149658760
Offset: 0
A010048 Triangle of Fibonomial coefficients, read by rows.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 5, 15, 15, 5, 1, 1, 8, 40, 60, 40, 8, 1, 1, 13, 104, 260, 260, 104, 13, 1, 1, 21, 273, 1092, 1820, 1092, 273, 21, 1, 1, 34, 714, 4641, 12376, 12376, 4641, 714, 34, 1, 1, 55, 1870, 19635, 85085, 136136, 85085, 19635, 1870, 55, 1
Offset: 0
Comments
Conjecture: polynomials with (positive) Fibonomial coefficients are reducible iff n odd > 1. - Ralf Stephan, Oct 29 2004
Examples
First few rows of the triangle T(n, k) are: n\k 0 1 2 3 4 5 6 7 8 9 10 0: 1 1: 1 1 2: 1 1 1 3: 1 2 2 1 4: 1 3 6 3 1 5: 1 5 15 15 5 1 6: 1 8 40 60 40 8 1 7: 1 13 104 260 260 104 13 1 8: 1 21 273 1092 1820 1092 273 21 1 9: 1 34 714 4641 12376 12376 4641 714 34 1 10: 1 55 1870 19635 85085 136136 85085 19635 1870 55 1 ... - Table extended and reformatted by _Wolfdieter Lang_, Oct 10 2012 For n=7 and k=3, n - k + 1 = 7 - 3 + 1 = 5, so T(7,3) = F(7)*F(6)*F(5)/( F(3)*F(2)*F(1)) = 13*8*5/(2*1*1) = 520/2 = 260. - _Michael B. Porter_, Sep 26 2016
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 84 and 492.
Links
- T. D. Noe, Rows n = 0..50 of triangle, flattened
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- A. T. Benjamin and S. S. Plott, A combinatorial approach to fibonomial coefficients, Fib. Quart. 46/47 (1) (2008/9) 7-9.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972.
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- M. Dziemianczuk, Cobweb Sequences Map, See sequence (4).2. [Dead link]
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
- P. F. F. Espinosa, J. F. González, J. P. Herrán, A. M. Cañadas, and J. L. Ramírez, On some relationships between snake graphs and Brauer configuration algebras, Algebra Disc. Math. (2022) Vol. 33, No. 2, 29-59.
- Sergio Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
- Dale Gerdemann, Golden Ratio Base Digit Patterns for Columns of the Fibonomial Triangle, "Another interesting pattern is for Golden Rectangle Numbers A001654. I made a short video illustrating this pattern, along with other columns of the Fibonomial Triangle A010048".
- Dale K. Hathaway and Stephen L. Brown, Fibonacci Powers and a Fascinating Triangle, The College Mathematics Journal, 28 (No. 2, 1997), 124-128. See Fig. 1.
- Ron Knott, The Fibonomials.
- E. Krot, An introduction to finite Fibonomial calculus, arXiv:math/0503210 [math.CO], 2005.
- E. Krot, Further developments in Fibonomial calculus, arXiv:math/0410550 [math.CO], 2004.
- D. Marques and P. Trojovsky, On Divisibility of Fibonomial Coefficients by 3, J. Int. Seq. 15 (2012) #12.6.4.
- D. Marques and P. Trojovsky, The p-adic order of some fibonomial coefficients, J. Int. Seq. 18 (2015) # 15.3.1.
- Romeo Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Phakhinkon Phunphayap, Various Problems Concerning Factorials, Binomial Coefficients, Fibonomial Coefficients, and Palindromes, Ph. D. Thesis, Silpakorn University (Thailand 2021).
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients, J. Int. Seq. 21 (2018), #18.3.1.
- C. Pita, On s-Fibonomials, J. Int. Seq. 14 (2011) # 11.3.7.
- C. J. Pita Ruiz Velasco, Sums of Products of s-Fibonacci Polynomial Sequences, J. Int. Seq. 14 (2011) # 11.7.6.
- T. M. Richardson, The Filbert Matrix, arXiv:math/9905079 [math.RA], 1992.
- Bruce Sagan, Two Binomial Coefficient Analogues, Slides, 2013.
- Jeremiah Southwick, A Conjecture concerning the Fibonomial Triangle, arXiv:1604.04775 [math.NT], 2016.
- Ralf Stephan, A recurrence for the fibonomials.
- Eric Weisstein's World of Mathematics, Fibonacci Coefficient, q-Binomial Coefficient.
Crossrefs
Cf. A055870 (signed version of triangle).
Programs
-
Magma
Fibonomial:= func< n,k | k eq 0 select 1 else (&*[Fibonacci(n-j+1)/Fibonacci(j): j in [1..k]]) >; [Fibonomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 20 2024
-
Maple
A010048 := proc(n,k) mul(combinat[fibonacci](i),i=n-k+1..n)/mul(combinat[fibonacci](i),i=1..k) ; end proc: seq(seq(A010048(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 05 2015
-
Mathematica
f[n_, k_] := Product[ Fibonacci[n - j + 1]/Fibonacci[j], {j, k}]; Table[ f[n, i], {n, 0, 10}, {i, 0, n}] (* Robert G. Wilson v, Dec 04 2009 *) Column[Round@Table[GoldenRatio^(k(n-k)) QBinomial[n, k, -1/GoldenRatio^2], {n, 0, 10}, {k, 0, n}], Center] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *) T[n_, k_] := With[{c = ArcCsch[2] - I Pi/2}, Product[I^j Sinh[c j], {j, k + 1, n}] / Product[I^j Sinh[c j], {j, 1, n - k}]]; Table[Simplify[T[n, k]], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Jul 08 2025 *)
-
Maxima
ffib(n):=prod(fib(k),k,1,n); fibonomial(n,k):=ffib(n)/(ffib(k)*ffib(n-k)); create_list(fibonomial(n,k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 02 2012 */
-
PARI
T(n, k) = prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j)); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
-
SageMath
def fibonomial(n,k): return 1 if k==0 else product(fibonacci(n-j+1)/fibonacci(j) for j in range(1,k+1)) flatten([[fibonomial(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 20 2024
Formula
T(n, k) = ((n, k)) = (F(n)*F(n-1)*...*F(n-k+1))/(F(k)*F(k-1)*...*F(1)), F(i) = Fibonacci numbers A000045.
T(n, k) = Fibonacci(n-k-1)*T(n-1, k-1) + Fibonacci(k+1)*T(n-1, k).
T(n, k) = phi^(k*(n-k)) * C(n, k)A001622%20is%20the%20golden%20ratio,%20and%20C(n,%20k)_q%20is%20the%20q-binomial%20coefficient.%20-%20_Vladimir%20Reshetnikov">{-1/phi^2}, where phi = (1+sqrt(5))/2 = A001622 is the golden ratio, and C(n, k)_q is the q-binomial coefficient. - _Vladimir Reshetnikov, Sep 26 2016
G.f. of column k: x^k * exp( Sum_{j>=1} Fibonacci((k+1)*j)/Fibonacci(j) * x^j/j ). - Seiichi Manyama, May 07 2025
T(n, k) = Product_{j=k+1..n} i^j*sinh(c*j) / Product_{j=1..n-k} i^j*sinh(c*j) where c = arccsch(2) - i*Pi/2 and i is the imaginary unit. If you substitute sinh by cosh you get the Lucas triangle A385732/A385733, which is a rational triangle. - Peter Luschny, Jul 08 2025
A055870 Signed Fibonomial triangle.
1, 1, -1, 1, -1, -1, 1, -2, -2, 1, 1, -3, -6, 3, 1, 1, -5, -15, 15, 5, -1, 1, -8, -40, 60, 40, -8, -1, 1, -13, -104, 260, 260, -104, -13, 1, 1, -21, -273, 1092, 1820, -1092, -273, 21, 1, 1, -34, -714, 4641, 12376, -12376, -4641, 714, 34, -1, 1, -55, -1870, 19635, 85085, -136136, -85085, 19635, 1870, -55, -1
Offset: 0
Comments
Row n+1 (n >= 1) of the signed triangle lists the coefficients of the recursion relation for the n-th power of Fibonacci numbers A000045: Sum_{m=0..n+1} T(n+1,m)*(Fibonacci(k-m))^n = 0, k >= n+1; inputs: (Fibonacci(k))^n, k=0..n.
The inverse of the row polynomial p(n,x) := Sum_{m=0..n} T(n,m)*x^m is the g.f. for the column m=n-1 of the Fibonomial triangle A010048.
The row polynomials p(n,x) factorize according to p(n,x) = G(n-1)*p(n-2,-x), with inputs p(0,x)= 1, p(1,x)= 1-x and G(n):= 1 - A000032(n)*x + (-1)^n*x^2. (Derived from Riordan's result and Knuth's exercise).
The row polynomials are the characteristic polynomials of product of the binomial matrix binomial(i,j) and the exchange matrix J_n (matrix with 1's on the antidiagonal, 0 elsewhere). - Paul Barry, Oct 05 2004
Examples
Row polynomial for n=4: p(4,x) = 1-3*x-6*x^2+3*x^3+x^4 = (1+x-x^2)*(1-4*x-x^2). 1/p(4,x) is G.f. for A010048(n+3,3), n >= 0: {1,3,15,60,...} = A001655(n). For n=3: 1*(Fibonacci(k))^3 - 3*(Fibonacci(k-1))^3 - 6*(Fibonacci(k-2))^3 + 3*(Fibonacci(k-3))^3 + 1*(Fibonacci(k-4))^3 = 0, k >= 4; inputs: (Fibonacci(k))^3, k=0..3. The triangle begins: n\m 0 1 2 3 4 5 6 7 8 9 0 1 1 1 -1 2 1 -1 -1 3 1 -2 -2 1 4 1 -3 -6 3 1 5 1 -5 -15 15 5 -1 6 1 -8 -40 60 40 -8 -1 7 1 -13 -104 260 260 -104 -13 1 8 1 -21 -273 1092 1820 -1092 -273 21 1 9 1 -34 -714 4641 12376 -12376 -4641 714 34 -1 ... [_Wolfdieter Lang_, Aug 06 2012; a(7,1) corrected, Oct 10 2012]
References
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, pp. 84-5 and 492.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Katharine A. Ahrens, Combinatorial Applications of the k-Fibonacci Numbers: A Cryptographically Motivated Analysis, Ph. D. thesis, North Carolina State University (2020).
- A. T. Benjamin, S. S. Plott, A combinatorial approach to fibonomial coefficients, Fib. Quart. 46/47 (1) (2008/9) 7-9.
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- H. W. Gould, Extensions of the Hermite g.c.d. theorems for binomial coefficients, Fib Quart. 33 (1995) 386.
- E. Kilic, The generalized Fibonomial matrix, Eur. J. Combinat. 31 (1) (2010) 193-209.
- Ron Knott, The Fibonomials
- Ewa Krot, An introduction to finite fibonomial calculus, Centr. Eur. J. Math. 2 (5) (2004) 754.
- A. K. Kwasniewski, Fibonomial cumulative connection constants, arXiv:math/0406006 [math.CO], 2004-2009.
- Phakhinkon Phunphayap, Various Problems Concerning Factorials, Binomial Coefficients, Fibonomial Coefficients, and Palindromes, Ph. D. Thesis, Silpakorn University (Thailand 2021).
- Phakhinkon Phunphayap, Prapanpong Pongsriiam, Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients, J. Int. Seq. 21 (2018), #18.3.1.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- J. Seibert and P. Trojovsky, On some identities for the Fibonomial coefficients, Math. Slov. 55 (2005) 9-19.
- P. Trojovsky, On some identities for the Fibonomial coefficients..., Discr. Appl. Math. 155 (15) (2007) 2017.
Crossrefs
Programs
-
Magma
Fibonomial:= func< n,k | k eq 0 select 1 else (&*[Fibonacci(n-j+1)/Fibonacci(j): j in [1..k]]) >; [(-1)^Floor((k+1)/2)*Fibonomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 20 2024
-
Maple
A055870 := proc(n,k) (-1)^floor((k+1)/2)*A010048(n,k) ; end proc: # R. J. Mathar, Jun 14 2015
-
Mathematica
T[n_, m_]:= {1,-1,-1,1}[[Mod[m,4] + 1]] * Product[ Fibonacci[n-j+1]/Fibonacci[j], {j, m}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Jean-François Alcover, Jul 05 2013 *)
-
SageMath
def fibonomial(n,k): return 1 if k==0 else product(fibonacci(n-j+1)/fibonacci(j) for j in range(1,k+1)) flatten([[(-1)^((k+1)//2)*fibonomial(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 20 2024
Formula
G.f. for column m: (-1)^floor((m+1)/2)*x^m/p(m+1, x) with the row polynomial of the (signed) triangle: p(n, x) := Sum_{m=0..n} T(n, m)*x^m.
Sum_{k=0..n} T(n,k) * x^k = exp( -Sum_{k>=1} Fibonacci(n*k)/Fibonacci(k) * x^k/k ). - Seiichi Manyama, May 07 2025
A065563 Product of three consecutive Fibonacci numbers.
2, 6, 30, 120, 520, 2184, 9282, 39270, 166430, 704880, 2986128, 12649104, 53583010, 226980390, 961505790, 4073001576, 17253515288, 73087057560, 309601753890, 1311494059590, 5555578014142, 23533806080736, 99690802394400, 422297015565600, 1788878864806850, 7577812474550214
Offset: 1
References
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.
- T. Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 89, No. 32, with a minus sign.
Links
- Harry J. Smith, Table of n, a(n) for n=1..200
- V. E. Hoggatt and D. A. Lind, The Heights of Fibonacci Polynomials and an Associated Function, Fibonacci Quarterly, Vol. 5, No. 2 (April, 1967), pp. 141-152.
- Joseph S. Ozbolt, A New Sequence Derived From a Combination of Cubes with Volume Fn^3, Fibonacci Quarterly, Vol. 50, No. 1 (2012), pp. 19-26.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
Programs
-
Magma
[&*[Fibonacci(n+k): k in [0..2] ]: n in [1..30]]; // Vincenzo Librandi, Apr 09 2020
-
Maple
with (combinat):a:=n->fibonacci(n)*fibonacci(n+1)*fibonacci(n+2): seq(a(n), n=1..22); # Zerinvary Lajos, Oct 07 2007
-
Mathematica
Times@@@Partition[Fibonacci[Range[30]],3,1] (* Harvey P. Dale, Aug 18 2011 *)
-
PARI
a(n) = { fibonacci(n)*fibonacci(n + 1)*fibonacci(n + 2) } \\ Harry J. Smith, Oct 22 2009
Formula
G.f.: 2/(1 - 3*x - 6*x^2 + 3*x^3 + x^4).
a(n) = 2*A001655(n).
a(n) = Fibonacci(n+1)^3-(-1)^n*Fibonacci(n+1). - Gary Detlefs, Feb 02 2011
This corrects a sign mistake in the Koshy reference. - Wolfdieter Lang, Aug 07 2012
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4).
O.g.f.: 2*x/((1 + x - x^2)*(1 - 4*x - x^2)) (compare with A001655). - Wolfdieter Lang, Aug 06 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = A079586 - 3. - Amiram Eldar, Oct 04 2020
Sum_{n>=1} 1/a(n) = A324007. - Amiram Eldar, Feb 09 2023
Extensions
Offset changed from 0 to 1 by Harry J. Smith, Oct 22 2009
A066258 a(n) = Fibonacci(n)^2 * Fibonacci(n+1).
0, 1, 2, 12, 45, 200, 832, 3549, 14994, 63580, 269225, 1140624, 4831488, 20466953, 86698690, 367262700, 1555747893, 6590256856, 27916771136, 118257348165, 500946152850, 2122041977276, 8989114033297, 38078498156832, 161303106585600, 683290924620625, 2894466804871682
Offset: 0
Comments
From Feryal Alayont, Apr 27 2023: (Start)
a(n) is the number of edge covers of a caterpillar graph with spine P_(3n-2), one pendant attached at vertex n counting from the left end of the spine and another pendant at vertex 2n-1. The caterpillar graph for n=3 is as follows:
* *
| |
*--*--*--*--*--*--*
v
Each pendant edge must be included in an edge cover. Every vertex except v is then incident with at least one edge. Therefore, of the remaining four edges in the spine, only two in the middle have restrictions. At least one of those two has to be in the edge cover to ensure v is incident with one edge in the edge cover, leaving us with 3*2*2 total edge covers. (End)
Links
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- David Zeitlin, Generating Functions for Products of Recursive Sequences, Transactions A.M.S., 116, Apr. 1965, p. 304.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
Programs
-
Magma
[Fibonacci(n)^2*Fibonacci(n+1): n in [0..30]]; // G. C. Greubel, Feb 12 2024
-
Mathematica
#[[1]]^2 #[[2]]&/@Partition[Fibonacci[Range[0,30]],2,1] (* or *) LinearRecurrence[ {3,6,-3,-1},{0,1,2,12},30] (* Harvey P. Dale, Jul 28 2018 *)
-
PARI
a(n) = { fibonacci(n)^2 * fibonacci(n+1) } \\ Harry J. Smith, Feb 07 2010
-
SageMath
[fibonacci(n)^2*fibonacci(n+1) for n in range(31)] # G. C. Greubel, Feb 12 2024
Formula
O.g.f.: x*(1-x) / ( (1-4*x-x^2)*(1+x-x^2) ).
a(n) = second term from right in M^(n+1) * [1 0 0 0], where M = the 4 X 4 upper Pascal's triangular matrix [1 3 3 1 / 1 2 1 0 / 1 1 0 0 / 1 0 0 0]. E.g., a(3) = 45 since M^4 * [1 0 0 0] = [125 75 45 27] where 125 = A056570(5), 75 = A066259(4) and 27 = A056570(4). - Gary W. Adamson, Oct 31 2004
a(n) = (1/5)*(Fibonacci(3n+1) - (-1)^n*Fibonacci(n+2)). - Ralf Stephan, Jul 26 2005
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4). - Zak Seidov, May 07 2015
A001656 Fibonomial coefficients.
1, 5, 40, 260, 1820, 12376, 85085, 582505, 3994320, 27372840, 187628376, 1285992240, 8814405145, 60414613805, 414088493560, 2838203264876, 19453338487220, 133335155341960, 913892777190965, 6263914210945105
Offset: 0
Examples
G.f. = 1 + 5*x + 40*x^2 + 260*x^3 + 1820*x^4 + 12376*x^5 + 85085*x^6 + ... .
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Alfred Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 17.
- Nadia Heninger, E. M. Rains, and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Thomas Koshy, Infinite Sums Involving Jacobsthal Polynomial Products Revisited, The Fibonacci Quarterly, Vol. 60, No. 1 (2022), pp. 3-14.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1).
Programs
-
Maple
with (combinat): a:=n->1/6*fibonacci(n)*fibonacci(n+1)*fibonacci(n+2)*fibonacci(n+3): seq(a(n), n=1..18); # Zerinvary Lajos, Oct 07 2007 A001656:=-1/(z-1)/(z**2-7*z+1)/(z**2+3*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[(Fibonacci[n+3]*Fibonacci[n+2]*Fibonacci[n+1]*Fibonacci[n])/6,{n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *) LinearRecurrence[{5,15,-15,-5,1},{1,5,40,260,1820},20] (* Vincenzo Librandi, Aug 02 2012 *) Times@@@Partition[Fibonacci[Range[30]],4,1]/6 (* Harvey P. Dale, Oct 13 2016 *)
-
PARI
b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j)); vector(20, n, b(n-1, 4)) \\ Joerg Arndt, May 08 2016
Formula
a(n) = ((4+n, 4)) (see A010048), or fibonomial(4+n, 4).
G.f.: 1/(1-5*x-15*x^2+15*x^3+5*x^4-x^5) = 1/((1-x)*(1+3*x+x^2)*(1-7*x+x^2)) (see Comments to A055870). a(n)= 7*a(n-1)-a(n-2)+((-1)^n)*fibonomial(n+2, 2), n >= 2; a(0)=1, a(1)=5; fibonomial(n+2, 2)= A001654(n+1).
a(n) = Product_{k=1..n} Fibonacci(k+4)/Fibonacci(k). - Gary Detlefs, Feb 06 2011
a(n) = (F(n+3)^2-F(n+2)^2)*F(n+3)*F(n+2)/6, where F(n) is the n-th Fibonacci number. - Gary Detlefs, Oct 12 2011
a(n) = a(-5-n) for all n in Z. - Michael Somos, Sep 19 2014
0 = a(n)*(+a(n+1) - 2*a(n+2)) + a(n+1)*(-5*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 19 2014
From Peter Bala, Mar 30 2015: (Start)
The o.g.f. A(x) = 1/(1 - 5*x - 15*x^2 + 15*x^3 + 5*x^4 - x^5). Hence A(x) (mod 25) = 1/(1 - 5*x + 10*x^2 - 10^x^3 + 5*x^4 - x^5) (mod 25) = 1/(1 - x)^5 (mod 25). It follows by Theorem 1 of Heninger et al. that A(x)^(1/5) = 1 + x + 6*x^2 + 26*x^3 + ... has integral coefficients.
Sum_{n >= 0} a(n)*x^n = exp( Sum_{n >= 1} Fibonacci(5*n)/Fibonacci(n)*x^n/n ). Cf. A084175, A099930. (End)
Sum_{n>=0} 1/a(n) = 51/2 - 15*phi, where phi is the golden ratio (A001622) (Koshy, 2022, section 3.3, p. 9). - Amiram Eldar, Jan 23 2025
Extensions
Corrected and extended by Wolfdieter Lang, Jun 27 2000
More terms from Vladimir Joseph Stephan Orlovsky, Nov 23 2009
A001657 Fibonomial coefficients: column 5 of A010048.
1, 8, 104, 1092, 12376, 136136, 1514513, 16776144, 186135312, 2063912136, 22890661872, 253854868176, 2815321003313, 31222272414424, 346260798314872, 3840089017377228, 42587248616222024, 472299787252290712, 5237885063192296801, 58089034826620525728
Offset: 0
Examples
G.f. = 1 + 8*x + 104*x^2 + 1092*x^3 + 12376*x^4 + 136136*x^5 + 1514513*x^6 + ...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 17.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (8,40,-60,-40,8,1).
Programs
-
Maple
with(combinat) : a:=n-> 1/30*fibonacci(n)*fibonacci(n+1)*fibonacci(n+2)*fibonacci(n+3)*fibonacci(n+4): seq(a(n), n=1..19); # Zerinvary Lajos, Oct 07 2007 A001657:=-1/(z**2+11*z-1)/(z**2-4*z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation
-
Mathematica
f[n_] := Times @@ Fibonacci[Range[n + 1, n + 5]]/30; t = Table[f[n], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *) LinearRecurrence[{8,40,-60,-40,8,1},{1,8,104,1092,12376,136136},20] (* Harvey P. Dale, Nov 30 2019 *)
-
PARI
a(n)=(n->(n^5-n)/30)(fibonacci(n+3)) \\ Charles R Greathouse IV, Apr 24 2012
-
PARI
b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j)); vector(20, n, b(n-1, 5)) \\ Joerg Arndt, May 08 2016
Formula
a(n) = A010048(5+n, 5) (or fibonomial(5+n, 5)).
G.f.: 1/(1-8*x-40*x^2+60*x^3+40*x^4-8*x^5-x^6) = 1/((1-x-x^2)*(1+4*x-x^2)*(1-11*x-x^2)) (see Comments to A055870).
a(n) = 11*a(n-1) + a(n-2) + ((-1)^n)*fibonomial(n+3, 3), n >= 2; a(0)=1, a(1)=8; fibonomial(n+3, 3)= A001655(n).
a(n) = Fibonacci(n+3)*(Fibonacci(n+3)^4-1)/30. - Gary Detlefs, Apr 24 2012
a(n) = (A049666(n+3) + 2*(-1)^n*A001076(n+3) - 3*A000045(n+3))/150, n >= 0, with A049666(n) = F(5*n)/5, A001076(n) = F(3*n)/2 and A000045(n) = F(n). From the partial fraction decomposition of the o.g.f. and recurrences. - Wolfdieter Lang, Aug 23 2012
a(n) = a(-6-n) * (-1)^n for all n in Z. - Michael Somos, Sep 19 2014
0 = a(n)*(-a(n+1) - 3*a(n+2)) + a(n+1)*(-8*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 19 2014
G.f.: exp( Sum_{k>=1} F(6*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025
Extensions
Corrected and extended by Wolfdieter Lang, Jun 27 2000
A215037 a(n) = Sum_{k=0..n} fibonomial(k+3,3), n >= 0.
1, 4, 19, 79, 339, 1431, 6072, 25707, 108922, 461362, 1954426, 8278978, 35070483, 148560678, 629313573, 2665814361, 11292572005, 47836100785, 202636977730, 858384007525, 3636173014596, 15403076054964, 65248477252164
Offset: 0
Comments
This sum is obtained from the m=2 member of the m-family of sums s(m;n) := Sum_{k=0..n} F(k+m)*F(k+1)*F(k), n>=0, given by
(F(n+m)*F(n+2)*F(n+1) - (-1)^n*F(m)*A008346(n))/2 with A008346(n) = (F(n) + (-1)^n), where F = A000045.
The formula for s(m;n), m>=0, n>=0, follows by induction on m, using the sums for m=0 and m=1. s(0,n) = F(n+1)*(F(n+1)^2 - (-1)^n)/2 = F(n+2)*F(n+1)*F(n)/2 (see A001655(n-1)), and s(1,n) = (F(n+2)*F(n+1)^2 - (-1)^n*A008346(n))/2 (see A215038). For the formulas for s(0,n) and s(1,n) see also the link on partial summation, eqs. (6) and (7). There Sum_{k=0..n} fibonomial(k+2,k) is obtained more directly in eq. (5) with the help of the partial summation formula.
Examples
a(3) = 2*1*1/2 + 3*2*1/2 + 5*3*2/2 + 8*5*3/2 = 1 + 3 + 15 + 60 = 79.
Links
- Wolfdieter Lang, Partial summation formula applied to sums over cubes of Fibonacci numbers.
- Index entries for linear recurrences with constant coefficients, signature (4, 3, -9, 2, 1).
Programs
-
Mathematica
LinearRecurrence[{4, 3, -9, 2, 1}, {1, 4, 19, 79, 339}, 23] (* Hans J. H. Tuenter, Jun 26 2023 *)
Formula
Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k=0..n} F(k+3)*F(k+2)*F(k+1)/2.
a(n) = (F(n+3)^2*F(n+2) + (-1)^n*A008346(n+1))/4, n>=0, with A008346(n) = F(n) + (-1)^n. See a comment above.
G.f.: 1/((1+x-x^2)*(1-4*x-x^2)*(1-x)) (from the g.f. of the Fibonomials A001655).
From Hans J. H. Tuenter, Jun 26 2023: (Start)
a(n) = (F(n+3)^2*F(n+2) + (-1)^n*F(n+1)-1)/4.
a(n) = (F(n+3)^3 + F(n+2)^3 + (-1)^n*F(n+1) - 2)/8.
a(n) = (F(3*n+8) + 4*(-1)^n*F(n+1) - 5)/20.
a(n) = 4*a(n-1) + 3*a(n-2) - 9*a(n-3) + 2*a(n-4) + a(n-5).
a(-n) = A363753(n-3).
(End)
A256178 Expansion of exp( Sum_{n >= 1} L(2*n)*L(4*n)*x^n/n ), where L(n) = A000032(n) is a Lucas number.
1, 21, 385, 6930, 124410, 2232594, 40062659, 718896255, 12900072515, 231482415780, 4153783429236, 74536619356836, 1337505365115205, 24000559953034665, 430672573790340805, 7728105768275278134, 138675231255170368494
Offset: 0
Comments
Let L(n) = A000032(n) denote the n-th Lucas number.
For a fixed positive integer k, the power series expansion of exp( Sum_{n >= 1} L(k*n)x^n/n ) has integer coefficients given by the formula F(k*n)/F(k), where F(n) = A000045(n) [Johnson, 2.22].
The power series expansion of exp( Sum_{n >= 1} L(k*n)*L(2*k*n) *x^n/n ) has integer coefficients given by ( F(k*(n + 1))*F(k*(n + 2))*F(k*(n + 3)) )/( F(k)*F(2*k)*F(3*k) )
The present sequence is the particular case k = 2. See A001655 for the case k = 1.
Links
- B. Johnson, Fibonacci Identities by Matrix Methods and Generalisation to Related Sequences
- Eric Weisstein's World of Mathematics, Fibonacci Number
- Index entries for linear recurrences with constant coefficients, signature (21,-56,21,-1).
Programs
-
Maple
seq((1/24)*fibonacci(2*n+2)*fibonacci(2*n+4)*fibonacci(2*n+6), n = 0 .. 16);
-
Mathematica
Table[1/8 * Sum[Fibonacci[2*k + 2]*Fibonacci[6*n - 6*k + 6], {k, 0, n}], {n, 0, 17}] (* or *) RecurrenceTable[{a[n] == 21*a[n - 1] - 56*a[n - 2] + 21*a[n - 3] - a[n - 4], a[1] == 1, a[2] == 21, a[3] == 385, a[4] == 6930}, a, {n, 17}] (* Michael De Vlieger, Mar 18 2015 *)
Formula
a(n) = ( F(2*n + 2)*F(2*n + 4)*F(2*n + 6) )/( F(2)*F(4)*F(6) ).
a(n) = (1/8) * Sum_{k = 0..n} F(2*k + 2)*F(6*n - 6*k + 6).
O.g.f.: 1/( (1 - 3*x + x^2)*(1 - 18*x + x^2) ) = 1/8 * Sum_{n >= 0} F(2*n + 2)*x^n * Sum_{n >= 0} F(6*n + 6)*x^n.
O.g.f. also equals exp( Sum_{n >= 1} trace( M^(2*n) + M^(6*n) )*x^n/n ), where M is the 2X2 matrix [ 1, 1; 1, 0 ].
Recurrences: a(n) = 21*a(n-1) - 56*a(n-2) + 21*a(n-3) - a(n-4).
Also a(0) = 1 and for n >= 1, a(n) = (1/n)*Sum_{k = 1..n} L(2*k)*L(4*k)*a(n-k).
From Peter Bala, Aug 19 2022: (Start)
Sum_{n >= 0} 1/a(n) = 40/3 - 8*Sum_{n >= 1} 1/F(2*n) = 40/3 - 8*A153386.
Sum_{n >= 0} (-1)^n/a(n) = - 88/3 + 40*Sum_{n >= 1} (-1)^(n+1)/F(2*n). Cf. A265288. (End)
A363753 a(n) = Sum_{k=0..n} (-1)^k*F(k-1)*F(k)*F(k+1)/2, where F(n) is the Fibonacci number A000045(n).
0, 0, 1, -2, 13, -47, 213, -879, 3762, -15873, 67342, -285098, 1207966, -5116586, 21674919, -91815276, 388937619, -1647563169, 6979194475, -29564334305, 125236542640, -530510487155, 2247278519916, -9519624520452, 40325776676748, -170822731106052, 723616701297373
Offset: 0
Comments
Alternating sum of the product of three consecutive Fibonacci numbers, divided by two.
Can also be seen as the alternating sum of the Fibonomial coefficients (n+1,3), A001655.
This sequence is part of a suite of sums over triple products of Fibonacci numbers. Subba Rao (1953) gives closed-form expressions for several Fibonacci sums of this type.
Links
- K. Subba Rao, Some properties of Fibonacci numbers, The American Mathematical Monthly, 60(10):680-684, December 1953.
- Index entries for linear recurrences with constant coefficients, signature (-2,9,-3,-4,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{-2, 9, -3, -4, 1}, {0, 0, 1, -2, 13}, 27]
Formula
a(n) = ((-1)^n*(F(n+1)^3 - F(n)^3) + F(n+2) - 2)/8.
a(n) = ((-1)^n*F(3*n+1) + 4*F(n+2) - 5)/20.
a(n) = -2*a(n-1) + 9*a(n-2) - 3*a(n-3) - 4*a(n-4) + a(n-5).
a(-n) = A215037(n-3).
G.f.: x^2/((1 - x)*(1 + 4*x - x^2)*(1 - x - x^2)).
Comments
Examples
References
Links
Crossrefs
Programs
Haskell
Magma
Maple
Mathematica
PARI
PARI
Python
Python
Formula
Extensions