cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A039598 Triangle formed from odd-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x). Sometimes called Catalan's triangle.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 14, 14, 6, 1, 42, 48, 27, 8, 1, 132, 165, 110, 44, 10, 1, 429, 572, 429, 208, 65, 12, 1, 1430, 2002, 1638, 910, 350, 90, 14, 1, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of leaves at level k+1 in all ordered trees with n+1 edges. - Emeric Deutsch, Jan 15 2005
Riordan array ((1-2x-sqrt(1-4x))/(2x^2),(1-2x-sqrt(1-4x))/(2x)). Inverse array is A053122. - Paul Barry, Mar 17 2005
T(n,k) is the number of walks of n steps, each in direction N, S, W, or E, starting at the origin, remaining in the upper half-plane and ending at height k (see the R. K. Guy reference, p. 5). Example: T(3,2)=6 because we have ENN, WNN, NEN, NWN, NNE and NNW. - Emeric Deutsch, Apr 15 2005
Triangle T(n,k), 0<=k<=n, read by rows given by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = 2*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 30 2007
Number of (2n+1)-step walks from (0,0) to (2n+1,2k+1) and consisting of steps u=(1,1) and d=(1,-1) in which the path stays in the nonnegative quadrant. Examples: T(2,0)=5 because we have uuudd, uudud, uuddu, uduud, ududu; T(2,1)=4 because we have uuuud, uuudu, uuduu, uduuu; T(2,2)=1 because we have uuuuu. - Philippe Deléham, Apr 16 2007, Apr 18 2007
Triangle read by rows: T(n,k)=number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and two types of steps H=(1,0); example: T(3,1)=14 because we have UDU, UUD, 4 HHU paths, 4 HUH paths and 4 UHH paths. - Philippe Deléham, Sep 25 2007
This triangle belongs to the family of triangles defined by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
With offset [1,1] this is the (ordinary) convolution triangle a(n,m) with o.g.f. of column m given by (c(x)-1)^m, where c(x) is the o.g.f. for Catalan numbers A000108. See the Riordan comment by Paul Barry.
T(n, k) is also the number of order-preserving full transformations (of an n-chain) with exactly k fixed points. - Abdullahi Umar, Oct 02 2008
T(n,k)/2^(2n+1) = coefficients of the maximally flat lowpass digital differentiator of the order N=2n+3. - Pavel Holoborodko (pavel(AT)holoborodko.com), Dec 19 2008
The signed triangle S(n,k) := (-1)^(n-k)*T(n,k) provides the transformation matrix between f(n,l) := L(2*l)*5^n*F(2*l)^(2*n+1) (F=Fibonacci numbers A000045, L=Lucas numbers A000032) and F(4*l*(k+1)), k = 0, ..., n, for each l>=0: f(n,l) = Sum_{k=0..n} S(n,k)*F(4*l*(k+1)), n>=0, l>=0. Proof: the o.g.f. of the l.h.s., G(l;x) := Sum_{n>=0} f(n,l)*x^n = F(4*l)/(1 - 5*F(2*l)^2*x) is shown to match the o.g.f. of the r.h.s.: after an interchange of the n- and k-summation, the Riordan property of S = (C(x)/x,C(x)) (compare with the above comments by Paul Barry), with C(x) := 1 - c(-x), with the o.g.f. c(x) of A000108 (Catalan numbers), is used, to obtain, after an index shift, first Sum_{k>=0} F(4*l*(k))*GS(k;x), with the o.g.f of column k of triangle S which is GS(k;x) := Sum_{n>=k} S(n,k)*x^n = C(x)^(k+1)/x. The result is GF(l;C(x))/x with the o.g.f. GF(l,x) := Sum_{k>=0} F(4*l*k)*x^k = x*F(4*l)/(1-L(4*l)*x+x^2) (see a comment on A049670, and A028412). If one uses then the identity L(4*n) - 5*F(2*n)^2 = 2 (in Koshy's book [reference under A065563] this is No. 15, p. 88, attributed to Lucas, 1876), the proof that one recovers the o.g.f. of the l.h.s. from above boils down to a trivial identity on the Catalan o.g.f., namely 1/c^2(-x) = 1 + 2*x - (x*c(-x))^2. - Wolfdieter Lang, Aug 27 2012
O.g.f. for row polynomials R(x) := Sum_{k=0..n} a(n,k)*x^k:
((1+x) - C(z))/(x - (1+x)^2*z) with C the o.g.f. of A000108 (Catalan numbers). From Riordan ((C(x)-1)/x,C(x)-1), compare with a Paul Barry comment above. This coincides with the o.g.f. given by Emeric Deutsch in the formula section. - Wolfdieter Lang, Nov 13 2012
The A-sequence for this Riordan triangle is [1,2,1] and the Z-sequence is [2,1]. See a W. Lang link under A006232 with details and references. - Wolfdieter Lang, Nov 13 2012
From Wolfdieter Lang, Sep 20 2013: (Start)
T(n, k) = A053121(2*n+1, 2*k+1). T(n, k) appears in the formula for the (2*n+1)-th power of the algebraic number rho(N) := 2*cos(Pi/N) = R(N, 2) in terms of the even-indexed diagonal/side length ratios R(N, 2*(k+1)) = S(2*k+1, rho(N)) in the regular N-gon inscribed in the unit circle (length unit 1). S(n, x) are Chebyshev's S polynomials (see A049310): rho(N)^(2*n+1) = Sum_{k=0..n} T(n, k)*R(N, 2*(k+1)), n >= 0, identical in N >= 1. For a proof see the Sep 21 2013 comment under A053121. Note that this is the unreduced version if R(N, j) with j > delta(N), the degree of the algebraic number rho(N) (see A055034), appears. For the even powers of rho(n) see A039599. (End)
The tridiagonal Toeplitz production matrix P in the Example section corresponds to the unsigned Cartan matrix for the simple Lie algebra A_n as n tends to infinity (cf. Damianou ref. in A053122). - Tom Copeland, Dec 11 2015 (revised Dec 28 2015)
T(n,k) is the number of pairs of non-intersecting walks of n steps, each in direction N or E, starting at the origin, and such that the end points of the two paths are separated by a horizontal distance of k. See Shapiro 1976. - Peter Bala, Apr 12 2017
Also the convolution triangle of the Catalan numbers A000108. - Peter Luschny, Oct 07 2022

Examples

			Triangle T(n,k) starts:
n\k     0      1      2      3      4     5    6    7   8  9 10
0:      1
1:      2      1
2:      5      4      1
3:     14     14      6      1
4:     42     48     27      8      1
5:    132    165    110     44     10     1
6:    429    572    429    208     65    12    1
7:   1430   2002   1638    910    350    90   14    1
8:   4862   7072   6188   3808   1700   544  119   16   1
9:  16796  25194  23256  15504   7752  2907  798  152  18  1
10: 58786  90440  87210  62016  33915 14364 4655 1120 189 20  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 13 2012.
Production matrix begins:
2, 1
1, 2, 1
0, 1, 2, 1
0, 0, 1, 2, 1
0, 0, 0, 1, 2, 1
0, 0, 0, 0, 1, 2, 1
0, 0, 0, 0, 0, 1, 2, 1
0, 0, 0, 0, 0, 0, 1, 2, 1
- _Philippe Deléham_, Nov 07 2011
From _Wolfdieter Lang_, Nov 13 2012: (Start)
Recurrence: T(5,1) = 165 = 1*42 + 2*48 +1*27. The Riordan A-sequence is [1,2,1].
Recurrence from Riordan Z-sequence [2,1]: T(5,0) = 132 = 2*42 + 1*48. (End)
From _Wolfdieter Lang_, Sep 20 2013: (Start)
  Example for rho(N) = 2*cos(Pi/N) powers:
  n=2: rho(N)^5 = 5*R(N, 2) + 4*R(N, 4) + 1*R(N, 6) = 5*S(1, rho(N)) + 4*S(3, rho(N)) + 1*S(5, rho(N)), identical in N >= 1. For N=5 (the pentagon with only one distinct diagonal) the degree delta(5) = 2, hence R(5, 4) and R(5, 6) can be reduced, namely to R(5, 1) = 1 and R(5, 6) = -R(5,1) = -1, respectively. Thus rho(5)^5 = 5*R(N, 2) + 4*1  + 1*(-1) = 3 + 5*R(N, 2) = 3 + 5*rho(5), with the golden section rho(5). (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.

Crossrefs

Mirror image of A050166. Row sums are A001700.

Programs

  • Magma
    /* As triangle: */ [[Binomial(2*n,n-k) - Binomial(2*n,n-k-2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 22 2015
    
  • Maple
    T:=(n,k)->binomial(2*n, n-k) - binomial(2*n, n-k-2); # N. J. A. Sloane, Aug 26 2013
    # Uses function PMatrix from A357368. Adds row and column above and to the left.
    PMatrix(10, n -> binomial(2*n, n) / (n + 1)); # Peter Luschny, Oct 07 2022
  • Mathematica
    Flatten[Table[Binomial[2n, n-k] - Binomial[2n, n-k-2], {n,0,9}, {k,0,n}]] (* Jean-François Alcover, May 03 2011 *)
  • PARI
    T(n,k)=binomial(2*n,n-k) - binomial(2*n,n-k-2) \\ Charles R Greathouse IV, Nov 07 2016
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of the triangle.
    def A039598_triangle(n) :
        D = [0]*(n+2); D[1] = 1
        b = True; h = 1
        for i in range(2*n) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
            if b : print([D[z] for z in (1..h-1) ])
    A039598_triangle(10)  # Peter Luschny, May 01 2012
    

Formula

Row n: C(2n, n-k) - C(2n, n-k-2).
a(n, k) = C(2n+1, n-k)*2*(k+1)/(n+k+2) = A050166(n, n-k) = a(n-1, k-1) + 2*a(n-1, k)+ a (n-1, k+1) [with a(0, 0) = 1 and a(n, k) = 0 if n<0 or nHenry Bottomley, Sep 24 2001
From Philippe Deléham, Feb 14 2004: (Start)
T(n, 0) = A000108(n+1), T(n, k) = 0 if n0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*A000108(j).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+2) where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108.
Sum_{k>=0} T(m, k)*T(n, k) = A000108(m+n+1). (End)
T(n, k) = A009766(n+k+1, n-k) = A033184(n+k+2, 2k+2). - Philippe Deléham, Feb 14 2004
Sum_{j>=0} T(k, j)*A039599(n-k, j) = A028364(n, k). - Philippe Deléham, Mar 04 2004
Antidiagonal Sum_{k=0..n} T(n-k, k) = A000957(n+3). - Gerald McGarvey, Jun 05 2005
The triangle may also be generated from M^n * [1,0,0,0,...], where M = an infinite tridiagonal matrix with 1's in the super- and subdiagonals and [2,2,2,...] in the main diagonal. - Gary W. Adamson, Dec 17 2006
G.f.: G(t,x) = C^2/(1-txC^2), where C = (1-sqrt(1-4x))/(2x) is the Catalan function. From here G(-1,x)=C, i.e., the alternating row sums are the Catalan numbers (A000108). - Emeric Deutsch, Jan 20 2007
Sum_{k=0..n} T(n,k)*x^k = A000957(n+1), A000108(n), A000108(n+1), A001700(n), A049027(n+1), A076025(n+1), A076026(n+1) for x=-2,-1,0,1,2,3,4 respectively (see square array in A067345). - Philippe Deléham, Mar 21 2007, Nov 04 2011
Sum_{k=0..n} T(n,k)*(k+1) = 4^n. - Philippe Deléham, Mar 30 2007
Sum_{j>=0} T(n,j)*binomial(j,k) = A035324(n,k), A035324 with offset 0 (0 <= k <= n). - Philippe Deléham, Mar 30 2007
T(n,k) = A053121(2*n+1,2*k+1). - Philippe Deléham, Apr 16 2007, Apr 18 2007
T(n,k) = A039599(n,k) + A039599(n,k+1). - Philippe Deléham, Sep 11 2007
Sum_{k=0..n+1} T(n+1,k)*k^2 = A029760(n). - Philippe Deléham, Dec 16 2007
Sum_{k=0..n} T(n,k)*A059841(k) = A000984(n). - Philippe Deléham, Nov 12 2008
G.f.: 1/(1-xy-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-.... (continued fraction).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A001700(n), A194723(n+1), A194724(n+1), A194725(n+1), A194726(n+1), A194727(n+1), A194728(n+1), A194729(n+1), A194730(n+1) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Nov 03 2011
From Peter Bala, Dec 21 2014: (Start)
This triangle factorizes in the Riordan group as ( C(x), x*C(x) ) * ( 1/(1 - x), x/(1 - x) ) = A033184 * A007318, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
Let U denote the lower unit triangular array with 1's on or below the main diagonal and zeros elsewhere. For k = 0,1,2,... define U(k) to be the lower unit triangular block array
/I_k 0\
\ 0 U/ having the k X k identity matrix I_k as the upper left block; in particular, U(0) = U. Then this array equals the bi-infinite product (...*U(2)*U(1)*U(0))*(U(0)*U(1)*U(2)*...). (End)
From Peter Bala, Jul 21 2015: (Start)
O.g.f. G(x,t) = (1/x) * series reversion of ( x/f(x,t) ), where f(x,t) = ( 1 + (1 + t)*x )^2/( 1 + t*x ).
1 + x*d/dx(G(x,t))/G(x,t) = 1 + (2 + t)*x + (6 + 4*t + t^2)*x^2 + ... is the o.g.f for A094527. (End)
Conjecture: Sum_{k=0..n} T(n,k)/(k+1)^2 = H(n+1)*A000108(n)*(2*n+1)/(n+1), where H(n+1) = Sum_{k=0..n} 1/(k+1). - Werner Schulte, Jul 23 2015
From Werner Schulte, Jul 25 2015: (Start)
Sum_{k=0..n} T(n,k)*(k+1)^2 = (2*n+1)*binomial(2*n,n). (A002457)
Sum_{k=0..n} T(n,k)*(k+1)^3 = 4^n*(3*n+2)/2.
Sum_{k=0..n} T(n,k)*(k+1)^4 = (2*n+1)^2*binomial(2*n,n).
Sum_{k=0..n} T(n,k)*(k+1)^5 = 4^n*(15*n^2+15*n+4)/4. (End)
The o.g.f. G(x,t) is such that G(x,t+1) is the o.g.f. for A035324, but with an offset of 0, and G(x,t-1) is the o.g.f. for A033184, again with an offset of 0. - Peter Bala, Sep 20 2015
Denote this lower triangular array by L; then L * transpose(L) is the Cholesky factorization of the Hankel matrix ( 1/(i+j)*binomial(2*i+2*j-2, i+j-1) )A172417%20read%20as%20a%20square%20array.%20See%20Chamberland,%20p.%201669.%20-%20_Peter%20Bala">i,j >= 1 = A172417 read as a square array. See Chamberland, p. 1669. - _Peter Bala, Oct 15 2023

Extensions

Typo in one entry corrected by Philippe Deléham, Dec 16 2007

A056854 a(n) = Lucas(4*n).

Original entry on oeis.org

2, 7, 47, 322, 2207, 15127, 103682, 710647, 4870847, 33385282, 228826127, 1568397607, 10749957122, 73681302247, 505019158607, 3461452808002, 23725150497407, 162614600673847, 1114577054219522, 7639424778862807, 52361396397820127, 358890350005878082, 2459871053643326447
Offset: 0

Views

Author

Barry E. Williams, Aug 29 2000

Keywords

Comments

a(n) and b(n) := A004187(n) are the nonnegative proper and improper solutions of the Pell equation a(n)^2 - 5*(3*b(n))^2 = +4. See the cross-reference to A004187 below. - Wolfdieter Lang, Jun 26 2013
Lucas numbers of the form n^2-2. - Michel Lagneau, Aug 11 2014

Examples

			Pell equation: n = 0, 2^2 - 45*0^2 = +4 (improper);  n = 1, 7^2 - 5*(3*1)^2 = +4; n=2, 47^2 - 5*(3*7)^2 = +4. - _Wolfdieter Lang_, Jun 26 2013
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. quadrisection of A000032: this sequence (first), A056914 (second), A246453 (third, without 11), A288913 (fourth).
Cf. Lucas(k*n): A000032 (k = 1), A005248 (k = 2), A014448 (k = 3), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Magma
    [Lucas(4*n): n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
  • Mathematica
    a[0] = 2; a[1] = 7; a[n_] := 7a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{7,-1},{2,7},25] (* or *) LucasL[4*Range[0,25]] (* Harvey P. Dale, Aug 08 2011 *)
  • PARI
    a(n)=if(n<0,0,polsym(1-7*x+x^2,n)[n+1])
    
  • PARI
    a(n)=if(n<0,0,2*subst(poltchebi(n),x,7/2))
    
  • Sage
    [lucas_number2(n,7,1) for n in range(27)] #Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 7*a(n-1) - a(n-2) with a(0)=2, a(1)=7.
a(n) = A000032(4*n), where A000032 = Lucas numbers.
a(n) = 7*S(n-1, 7) - 2*S(n-2, 7) = S(n, 7) - S(n-2, 7) = 2*T(n, 7/2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U(n, x), resp. T(n, x), are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 7) = A004187(n), n>=0. See A049310 and A053120.
a(n) = ((7+sqrt(45))/2)^n + ((7-sqrt(45))/2)^n.
G.f.: (2-7x)/(1-7x+x^2).
a(n) = A005248(2*n); bisection of A005248.
a(n) = Fibonacci(8*n)/Fibonacci(4*n), n>0. - Gary Detlefs, Dec 26 2010
a(n) = 2 + 5*Fibonacci(2*n)^2 = 2 + 5*A049684(n), n >= 0. This is in Koshy's book (reference under A065563) 15. on p. 88. Compare with the above Chebyshev T formula. - Wolfdieter Lang, Aug 27 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(7 - 3*sqrt(5)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.14242 42709 40138 85949 ... = 2 + 1/(7 + 1/(47 + 1/(322 + ...))).
Also F(-alpha) = 0.85670 72882 04563 14901 ... has the continued fraction representation 1 - 1/(7 - 1/(47 - 1/(322 - ...))) and the simple continued fraction expansion 1/(1 + 1/((7-2) + 1/(1 + 1/((47-2) + 1/(1 + 1/((322-2) + 1/(1 + ...))))))). Cf. A005248.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((7^2-4) + 1/(1 + 1/((47^2-4) + 1/(1 + 1/((322^2-4) + 1/(1 + ...))))))).
Added Oct 13 2019: 1/2 + (1/2)*F(alpha)/F(-alpha) = 1.16675297774947414828... has the simple continued fraction expansion 1 + 1/((7 - 2) + 1/(1 + 1/((322 - 2) + 1/(1 + 1/(15127 - 2) + 1/(1 + ...))))). (End)
a(n) = Fibonacci(4*n+2) - Fibonacci(4*n-2), where Fibonacci(-2) = -1. - Bruno Berselli, May 25 2015
a(n) = sqrt(45*(A004187(n))^2+4).
From Peter Bala, Oct 13 2019: (Start)
a(n) = F(4*n+4)/F(4) - F(4*n-4)/F(4) = A004187(n+1) - A004187(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^4 = [2, 3; 3, 5].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) (mod p^k) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
5*Sum_{n >= 1} 1/(a(n) - 9/a(n)) = 1: (9 = Lucas(4)+2 and 5 = Lucas(4)-2)
9*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5/a(n)) = 1.
Sum_{n >= 1} 1/a(n) = (1/4)*( theta_3((7-3*sqrt(5))/2)^2 - 1 ), where theta_3(q) = 1 + 2*Sum_{n >= 1} q^n^2. Cf. A153415.
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4)*( 1 - theta_3((3*sqrt(5)-7)/2)^2 ).
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 7*x^2 + 48*x^3 + 329*x^4 + ... is the o.g.f. for A004187. (End)
E.g.f.: 2*exp(7*x/2)*cosh(3*sqrt(5)*x/2). - Stefano Spezia, Oct 18 2019
a(2k+1)/7 is the numerator of the continued fraction [3*sqrt(5), 3*sqrt(5), ..., 3*sqrt(5)] with 2k copies of 3*sqrt(5), for k>0. - Greg Dresden and Tracy Z. Wu, Sep 10 2020
a(n) = Sum_{k>=1} Lucas(2*n*k)/(Lucas(2*n)^k). - Diego Rattaggi, Jan 20 2025

Extensions

More terms from James Sellers, Aug 31 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A049684 a(n) = Fibonacci(2n)^2.

Original entry on oeis.org

0, 1, 9, 64, 441, 3025, 20736, 142129, 974169, 6677056, 45765225, 313679521, 2149991424, 14736260449, 101003831721, 692290561600, 4745030099481, 32522920134769, 222915410843904, 1527884955772561, 10472279279564025, 71778070001175616, 491974210728665289
Offset: 0

Views

Author

Keywords

Comments

This is the r=9 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
Apparently, this sequence consists of those nonnegative integers k for which x*(x^2-1)*y*(y^2-1) = k*(k^2-1) has a solution in nonnegative integers x, y. If k = a(n), x = A000045(2*n-1) and y = A000045(2*n+1) are a solution. See A374375 for numbers k*(k^2-1) that can be written as a product of two or more factors of the form x*(x^2-1). - Pontus von Brömssen, Jul 14 2024

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 27.
  • H. J. H. Tuenter, Fibonacci summation identities arising from Catalan's identity, Fib. Q., 60:4 (2022), 312-319.

Crossrefs

First differences give A033890.
First differences of A103434.
Bisection of A007598 and A064841.
a(n) = A064170(n+2) - 1 = (1/5) A081070.

Programs

  • Mathematica
    Join[{a=0, b=1}, Table[c=7*b-1*a+2; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
    Fibonacci[Range[0, 40, 2]]^2 (* Harvey P. Dale, Mar 22 2012 *)
    Table[Fibonacci[n - 1] Fibonacci[n + 1] - 1, {n, 0, 40, 2}] (* Bruno Berselli, Feb 12 2015 *)
    LinearRecurrence[{8, -8, 1},{0, 1, 9},21] (* Ray Chandler, Sep 23 2015 *)
  • MuPAD
    numlib::fibonacci(2*n)^2 $ n = 0..35; // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n)=fibonacci(2*n)^2
    
  • Sage
    [fibonacci(2*n)^2 for n in range(0, 21)] # Zerinvary Lajos, May 15 2009

Formula

G.f.: (x+x^2) / ((1-x)*(1-7*x+x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) with n>2, a(0)=0, a(1)=1, a(2)=9.
a(n) = 7*a(n-1) - a(n-2) + 2 = A001906(n)^2.
a(n) = (A000032(4*n)-2)/5. [This is in Koshy's book (reference under A065563) on p. 88, attributed to Lucas 1876.] - Wolfdieter Lang, Aug 27 2012
a(n) = 1/5*(-2 + ( (7+sqrt(45))/2 )^n + ( (7-sqrt(45))/2 )^n). - Ralf Stephan, Apr 14 2004
a(n) = 2*(T(n, 7/2)-1)/5 with twice the Chebyshev polynomials of the first kind evaluated at x=7/2: 2*T(n, 7/2)= A056854(n). - Wolfdieter Lang, Oct 18 2004
a(n) = F(2*n-1)*F(2*n+1)-1, see A064170 - Bruno Berselli, Feb 12 2015
a(n) = Sum_{i=1..n} F(4*i-2) for n>0. - Bruno Berselli, Aug 25 2015
From Peter Bala, Nov 20 2019: (Start)
Sum_{n >= 1} 1/(a(n) + 1) = (sqrt(5) - 1)/2.
Sum_{n >= 1} 1/(a(n) + 4) = (3*sqrt(5) - 2)/16. More generally, it appears that
Sum_{n >= 1} 1/(a(n) + F(2*k+1)^2) = ((2*k+1)*F(2*k+1)*sqrt(5) - Lucas(2*k+1))/ (2*F(2*k+1)*F(4*k+2)) for k = 0,1,2,....
Sum_{n >= 2} 1/(a(n) - 1) = (8 - 3*sqrt(5))/9. (End)
E.g.f.: (1/5)*(-2*exp(x) + exp((16*x)/(1 + sqrt(5))^4) + exp((1/2)*(7 + 3*sqrt(5))*x)). - Stefano Spezia, Nov 23 2019
Product_{n>=2} (1 - 1/a(n)) = phi^2/3, where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 01 2021
a(n) = A092521(n-1)+A092521(n). - R. J. Mathar, Nov 22 2024

Extensions

Better description and more terms from Michael Somos

A001655 Fibonomial coefficients: a(n) = F(n+1) * F(n+2) * F(n+3)/2, where F() = Fibonacci numbers A000045.

Original entry on oeis.org

1, 3, 15, 60, 260, 1092, 4641, 19635, 83215, 352440, 1493064, 6324552, 26791505, 113490195, 480752895, 2036500788, 8626757644, 36543528780, 154800876945, 655747029795, 2777789007071, 11766903040368, 49845401197200, 211148507782800, 894439432403425
Offset: 0

Views

Author

Keywords

Comments

In a triangle having sides of F(n+1), 2*F(n+2) and F(n+3), the product of the area and circumradius will be a(n). For example: a triangle having sides of 5, 16 and 13 will have an area of 4*sqrt(51), a circumradius of 65*sqrt(51)/51, and the product is 4*65 = 260. - Gary Detlefs, Dec 14 2010
Explanation of this comment: if a triangle with sides (a, b, c) has a circumradius R and an area A, then A*R = abc/4; here, with a = F(n+1), b=2*F(n+2) and c=F(n+3), this gives a(n)= A*R. - Bernard Schott, Jan 26 2023

Examples

			G.f. = 1 + 3*x + 15*x^2 + 60*x^3 + 260*x^4 + 1092*x^5 + 4641*x^6 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A066258 (first differences), A215037 (partial sums), A363753 (alternating sums).

Programs

  • Magma
    [Fibonacci(n+3)*Fibonacci(n+2)*Fibonacci(n+1)/2: n in [0..30]]; // Vincenzo Librandi, May 09 2016
  • Maple
    A001655:=1/(z**2-z-1)/(z**2+4*z-1); # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    Table[(Fibonacci[n+3]*Fibonacci[n+2]*Fibonacci[n+1])/2, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
    LinearRecurrence[{3, 6, -3, -1}, {1, 3, 15, 60}, 25] (* Jean-François Alcover, Sep 23 2017 *)
  • PARI
    b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j)); vector(20, n, b(n-1, 3))  \\ Joerg Arndt, May 08 2016
    

Formula

G.f.: 1/(1-3*x-6*x^2+3*x^3+x^4) = 1/((1+x-x^2)*(1-4*x-x^2)) (see Comments to A055870).
a(n) = A010048(n+3, 3) = fibonomial(n+3, 3).
a(n) = (1/2) * A065563(n).
a(n) = 4*a(n-1) + a(n-2) + ((-1)^n)*F(n+1), n >= 2; a(0)=1, a(1)=3.
a(n) = (F(n+3)^3 - F(n+2)^3 - F(n+1)^3)/6. - Gary Detlefs, Dec 24 2010
a(n-1) = Sum_{k=0..n} F(k+1)*F(k)^2, n >= 1. - Wolfdieter Lang, Aug 01 2012
From Wolfdieter Lang, Aug 09 2012: (Start)
a(n-1)*(-1)^n = Sum_{k=0..n} (-1)^k*F(k+1)^2*F(k), n >= 1. See the link under A215037, eq. (25).
a(n) = (F(3*(n+2)) + 2*(-1)^n*F(n+2))/10, n >= 0. See the same link, eq. (32). (End)
a(n) = -a(-4-n)*(-1)^n for all n in Z. - Michael Somos, Sep 19 2014
0 = a(n)*(-a(n+1) - a(n+2)) + a(n+1)*(-3*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 19 2014
O.g.f.: exp( Sum_{n >= 1} L(n)*L(2*n)*x^n/n ), where L(n) = A000032(n) is a Lucas number. Cf. A114525, A256178. - Peter Bala, Mar 18 2015
Sum_{n>=0} (-1)^n/a(n) = 2 * A079586 - 6. - Amiram Eldar, Oct 04 2020
The formula by Gary Detlefs above is valid for all sequences of the Fibonacci type f(n) = f(n-1) + f(n-2): 3*f(n+2)*f(n+1)*f(n) = f(n+2)^3 - f(n+1)^3 - f(n)^3. - Klaus Purath, Mar 25 2021
a(n) = sqrt(Sum_{j=1..n+1} F(j)^3*F(j+1)^3). See Treeby link. - Michel Marcus, Apr 10 2022
a(n) = Sum_{k=1..n+1} A000129(k)*A056570(n+2-k). - Michael A. Allen, Jan 25 2023
G.f.: exp( Sum_{k>=1} F(4*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025

A153386 Decimal expansion of Sum_{n>=1} 1/Fibonacci(2*n).

Original entry on oeis.org

1, 5, 3, 5, 3, 7, 0, 5, 0, 8, 8, 3, 6, 2, 5, 2, 9, 8, 5, 0, 2, 9, 8, 5, 2, 8, 9, 6, 6, 5, 1, 5, 9, 9, 0, 0, 6, 3, 6, 7, 0, 1, 1, 5, 9, 1, 0, 7, 1, 1, 3, 8, 5, 6, 3, 2, 3, 5, 2, 6, 3, 6, 6, 5, 1, 3, 1, 0, 4, 7, 2, 7, 8, 6, 2, 8, 9, 0, 9, 4, 1, 6, 0, 1, 6, 5, 0, 2, 3, 1, 6, 6, 3, 6, 9, 6, 9, 3, 3, 6, 5, 3, 2, 7, 9
Offset: 1

Views

Author

Eric W. Weisstein, Dec 25 2008

Keywords

Examples

			1.535370508836252985029852896651599006367...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.14.1, p. 358.

Crossrefs

Programs

  • Mathematica
    rd[k_] := rd[k] = RealDigits[ N[ Sum[ 1/Fibonacci[2*n], {n, 1, 2^k}], 105]][[1]]; rd[k = 4]; While[ rd[k] != rd[k - 1], k++]; rd[k] (* Jean-François Alcover, Oct 29 2012 *)
    RealDigits[Sqrt[5] * (Log[5] + 2*QPolyGamma[0, 1, 1/GoldenRatio^4] - 4*QPolyGamma[0, 1, 1/GoldenRatio^2]) / (8*ArcCsch[2]), 10, 105][[1]] (* Vaclav Kotesovec, Feb 26 2023 *)
  • PARI
    sumpos(n=1, 1/fibonacci(2*n)) \\ Michel Marcus, Sep 04 2021

Formula

Equals sqrt(5) * (L((3-sqrt(5))/2) - L((7-3*sqrt(5))/2)), where L(x) = Sum_{k>=1} x^k/(1-x^k) (Horadam, 1988, equation (4.6)). - Amiram Eldar, Oct 04 2020
From Gleb Koloskov, Sep 04 2021: (Start)
Equals 1/2 + (sqrt(5)/log(phi))*(log(5)/8 + 3*Integral_{x=0..infinity} sin(x)/((4*sin(x)^2+5)*(exp(Pi*x/log(phi))-1)) dx), where phi = (1+sqrt(5))/2 = A001622.
Equals 1/2 + (A002163/A002390)*(A016628/8 + 3*Integral_{x=0..infinity} sin(x)/((4*sin(x)^2+5)*(A001113^(A000796*x/A002390)-1)) dx). (End)
Equals 1 + Sum_{n>=1} 1/A065563(2*n-1) (André-Jeannin, 1993). - Amiram Eldar, Jan 15 2022
From Peter Bala, Aug 17 2022: (Start)
Equals 5/3 - 3*Sum_{n >= 1} 1/(F(2*n)*F(2*n+2)*F(2*n+4)), where F(n) = Fibonacci(n).
Conjecture: Equals 151/96 - 6*Sum_{n >= 1} 1/(F(2*n)*F(2*n+4)*F(2*n+6)). (End)
Equals A360928 * sqrt(5). - Kevin Ryde, Feb 27 2023

A066258 a(n) = Fibonacci(n)^2 * Fibonacci(n+1).

Original entry on oeis.org

0, 1, 2, 12, 45, 200, 832, 3549, 14994, 63580, 269225, 1140624, 4831488, 20466953, 86698690, 367262700, 1555747893, 6590256856, 27916771136, 118257348165, 500946152850, 2122041977276, 8989114033297, 38078498156832, 161303106585600, 683290924620625, 2894466804871682
Offset: 0

Views

Author

Len Smiley, Dec 09 2001

Keywords

Comments

From Feryal Alayont, Apr 27 2023: (Start)
a(n) is the number of edge covers of a caterpillar graph with spine P_(3n-2), one pendant attached at vertex n counting from the left end of the spine and another pendant at vertex 2n-1. The caterpillar graph for n=3 is as follows:
* *
| |
*--*--*--*--*--*--*
v
Each pendant edge must be included in an edge cover. Every vertex except v is then incident with at least one edge. Therefore, of the remaining four edges in the spine, only two in the middle have restrictions. At least one of those two has to be in the edge cover to ensure v is incident with one edge in the edge cover, leaving us with 3*2*2 total edge covers. (End)

Crossrefs

First differences of A001655.

Programs

  • Magma
    [Fibonacci(n)^2*Fibonacci(n+1): n in [0..30]]; // G. C. Greubel, Feb 12 2024
    
  • Mathematica
    #[[1]]^2 #[[2]]&/@Partition[Fibonacci[Range[0,30]],2,1] (* or *) LinearRecurrence[ {3,6,-3,-1},{0,1,2,12},30] (* Harvey P. Dale, Jul 28 2018 *)
  • PARI
    a(n) = { fibonacci(n)^2 * fibonacci(n+1) } \\ Harry J. Smith, Feb 07 2010
    
  • SageMath
    [fibonacci(n)^2*fibonacci(n+1) for n in range(31)] # G. C. Greubel, Feb 12 2024

Formula

O.g.f.: x*(1-x) / ( (1-4*x-x^2)*(1+x-x^2) ).
a(n) = second term from right in M^(n+1) * [1 0 0 0], where M = the 4 X 4 upper Pascal's triangular matrix [1 3 3 1 / 1 2 1 0 / 1 1 0 0 / 1 0 0 0]. E.g., a(3) = 45 since M^4 * [1 0 0 0] = [125 75 45 27] where 125 = A056570(5), 75 = A066259(4) and 27 = A056570(4). - Gary W. Adamson, Oct 31 2004
a(n) = (1/5)*(Fibonacci(3n+1) - (-1)^n*Fibonacci(n+2)). - Ralf Stephan, Jul 26 2005
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4). - Zak Seidov, May 07 2015

A001657 Fibonomial coefficients: column 5 of A010048.

Original entry on oeis.org

1, 8, 104, 1092, 12376, 136136, 1514513, 16776144, 186135312, 2063912136, 22890661872, 253854868176, 2815321003313, 31222272414424, 346260798314872, 3840089017377228, 42587248616222024, 472299787252290712, 5237885063192296801, 58089034826620525728
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 8*x + 104*x^2 + 1092*x^3 + 12376*x^4 + 136136*x^5 + 1514513*x^6 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combinat) : a:=n-> 1/30*fibonacci(n)*fibonacci(n+1)*fibonacci(n+2)*fibonacci(n+3)*fibonacci(n+4): seq(a(n), n=1..19); # Zerinvary Lajos, Oct 07 2007
    A001657:=-1/(z**2+11*z-1)/(z**2-4*z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_] := Times @@ Fibonacci[Range[n + 1, n + 5]]/30; t = Table[f[n], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
    LinearRecurrence[{8,40,-60,-40,8,1},{1,8,104,1092,12376,136136},20] (* Harvey P. Dale, Nov 30 2019 *)
  • PARI
    a(n)=(n->(n^5-n)/30)(fibonacci(n+3)) \\ Charles R Greathouse IV, Apr 24 2012
    
  • PARI
    b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
    vector(20, n, b(n-1, 5))  \\ Joerg Arndt, May 08 2016

Formula

a(n) = A010048(5+n, 5) (or fibonomial(5+n, 5)).
G.f.: 1/(1-8*x-40*x^2+60*x^3+40*x^4-8*x^5-x^6) = 1/((1-x-x^2)*(1+4*x-x^2)*(1-11*x-x^2)) (see Comments to A055870).
a(n) = 11*a(n-1) + a(n-2) + ((-1)^n)*fibonomial(n+3, 3), n >= 2; a(0)=1, a(1)=8; fibonomial(n+3, 3)= A001655(n).
a(n) = Fibonacci(n+3)*(Fibonacci(n+3)^4-1)/30. - Gary Detlefs, Apr 24 2012
a(n) = (A049666(n+3) + 2*(-1)^n*A001076(n+3) - 3*A000045(n+3))/150, n >= 0, with A049666(n) = F(5*n)/5, A001076(n) = F(3*n)/2 and A000045(n) = F(n). From the partial fraction decomposition of the o.g.f. and recurrences. - Wolfdieter Lang, Aug 23 2012
a(n) = a(-6-n) * (-1)^n for all n in Z. - Michael Somos, Sep 19 2014
0 = a(n)*(-a(n+1) - 3*a(n+2)) + a(n+1)*(-8*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 19 2014
G.f.: exp( Sum_{k>=1} F(6*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025

Extensions

Corrected and extended by Wolfdieter Lang, Jun 27 2000

A066259 a(n) = Fibonacci(n)*Fibonacci(n+1)^2.

Original entry on oeis.org

1, 4, 18, 75, 320, 1352, 5733, 24276, 102850, 435655, 1845504, 7817616, 33116057, 140281700, 594243090, 2517253683, 10663258432, 45170286424, 191344405725, 810547906740, 3433536036866, 14544692047439, 61612304237568, 260993908980000, 1105587940186225, 4683345669678532
Offset: 1

Views

Author

Len Smiley, Dec 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    First[#]Last[#]^2&/@Partition[Fibonacci[Range[30]],2,1]  (* Harvey P. Dale, Mar 04 2011 *)
  • PARI
    a(n) = { fibonacci(n) * fibonacci(n+1)^2 } \\ Harry J. Smith, Feb 07 2010

Formula

O.g.f.: (x+x^2)/(1-3x-6x^2+3x^3+x^4) = x(1+x)/((1+x-x^2)(1-4x-x^2)).
a(n) = second term from left in M^n * [1 0 0 0] where M = the 4 X 4 upper triangular Pascal's triangle matrix [1 3 3 1 / 1 2 1 0 / 1 1 0 0 / 1 0 0 0]. E.g., a(4) = 75 since M^4 * [1 0 0 0] = [125 75 45 27] = [A056570(5) a(4) A066258(3) A056570(4)]. - Gary W. Adamson, Oct 31 2004
a(n) = (1/5)*(F(3n+2) - (-1)^n*F(n-1)). - Ralf Stephan, Jul 26 2005
a(n) = (F(n+2)^3 - 2*F(n)^3 - F(n-1)^3)/6. - Greg Dresden, Aug 12 2022

A215039 a(n) = Fibonacci(2*n)^3, n>=0.

Original entry on oeis.org

0, 1, 27, 512, 9261, 166375, 2985984, 53582633, 961504803, 17253512704, 309601747125, 5555577996431, 99690802348032, 1788878864685457, 32100128763082731, 576013438873664000, 10336141770970357629, 185474538438612378103
Offset: 0

Views

Author

Wolfdieter Lang, Aug 10 2012

Keywords

Comments

Bisection (even part) of A056570. From this follows the o.g.f., and its partial fraction decomposition leads to the explicit formula given below. The recurrences for F(2*n) and F(6*n)/8 are used in this computation. They follow from the fact that F(2*n) = S(n-1,3), and F(6*n)/8 = S(n-1,18), with Chebyshev's S(n,x) = U(n,x/2) polynomial of the second kind (see A001906 and A049660, respectively).

Crossrefs

Cf. A000045, A056570, A163198 (partial sums).

Programs

  • GAP
    List([0..20], n-> Fibonacci(2*n)^3 ); # G. C. Greubel, Dec 22 2019
  • Magma
    [Fibonacci(2*n)^3: n in [0..20]]; // G. C. Greubel, Dec 22 2019
    
  • Maple
    with(combinat); seq( fibonacci(2*n)^3, n=0..20); # G. C. Greubel, Dec 22 2019
  • Mathematica
    Fibonacci[2*(Range[21]-1)]^3 (* G. C. Greubel, Dec 22 2019 *)
  • PARI
    vector(21, n, fibonacci(2*(n-1)) ); \\ G. C. Greubel, Dec 22 2019
    
  • Sage
    [fibonacci(2*n)^3 for n in (0..20)] # G. C. Greubel, Dec 22 2019
    

Formula

a(n) = F(2*n)^3, n>=0, with F=A000045.
O.g.f.: x*(1+6*x+x^2)/((1-3*x+x^2)*(1-18*x+x^2)) (from the bisection (even part) of A056570).
a(n) = (F(6*n) - 3*F(2*n))/5, n>=0.
a(n+2) - 18*a(n+1) + a(n) - 9*F(2*(n+1)) = 0, n>=0. From the F_n^3 recurrence (see a comment and references on A055870, use row n=4) together with the recurrence appearing in the solution of exercise 6.58, p. 315, on p. 556 of the second edition of the Graham-Knuth-Patashnik book (reference given on A007318), both with n -> 2*n. See also Koshy's book (reference given on A065563) p. 87, 1. and p. 89, 32. (with a - sign) and 33. - Wolfdieter Lang, Aug 11 2012

A324007 Decimal expansion of the sum of reciprocals of the products of 3 consecutive Fibonacci numbers.

Original entry on oeis.org

7, 1, 0, 8, 5, 5, 3, 5, 1, 4, 2, 9, 3, 2, 8, 4, 1, 6, 8, 8, 7, 6, 9, 4, 4, 9, 0, 3, 8, 4, 2, 7, 0, 8, 3, 3, 0, 4, 5, 1, 1, 8, 0, 4, 8, 4, 1, 0, 3, 0, 8, 6, 3, 9, 9, 7, 4, 9, 7, 3, 5, 1, 4, 9, 3, 6, 9, 6, 4, 2, 3, 8, 2, 6, 1, 1, 3, 5, 4, 4, 8, 4, 1, 7, 5, 8, 8, 4, 1, 6, 8, 1, 7, 1, 4, 8, 5, 8, 5, 7, 6, 8, 5, 4, 9
Offset: 0

Views

Author

Robert G. Wilson v, Feb 11 2019

Keywords

Examples

			0.71085535142932841688769449038427083304511804841030863997497351493696423826...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[ N[ 1/Product[ Fibonacci@j, {j, k, k + 2}], 128], {k, 177}], 10, 111][[1]]
  • PARI
    suminf(n=1, 1/(fibonacci(n)*fibonacci(n+1)*fibonacci(n+2))) \\ Michel Marcus, Feb 19 2019

Formula

From Amiram Eldar, Feb 09 2023: (Start)
Equals Sum_{k>=1} 1/A065563(k).
Equals 1 - A158933 (Melham, 2003). (End)
Showing 1-10 of 13 results. Next