A056570
Third power of Fibonacci numbers (A000045).
Original entry on oeis.org
0, 1, 1, 8, 27, 125, 512, 2197, 9261, 39304, 166375, 704969, 2985984, 12649337, 53582633, 226981000, 961504803, 4073003173, 17253512704, 73087061741, 309601747125, 1311494070536, 5555577996431, 23533806109393, 99690802348032, 422297015640625
Offset: 0
a(4) = 27 because the fourth Fibonacci number is 3 and 3^3 = 27.
a(5) = 125 because the fifth Fibonacci number is 5 and 5^3 = 125.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Vincenzo Librandi, Table of n, a(n) for n = 0..173
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- Andrej Dujella, A bijective proof of Riordan's theorem on powers of Fibonacci numbers, Discrete Math. 199 (1999), no. 1-3, 217--220. MR1675924 (99k:05016).
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers cubed, Fib. Q. 58:5 (2020) 128-134.
- D. Foata and G.-N. Han, Nombres de Fibonacci et polynomes orthogonaux
- Mariana Nagy, Simon R. Cowell and Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019.
- Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop and Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp 4623-4627.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5.
- H. C. Williams and R. K. Guy, Odd and even linear divisibility sequences of order 4, INTEGERS, 2015, #A33.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
-
[Fibonacci(n)^3: n in [0..30]]; // Vincenzo Librandi, Jun 04 2011
-
A056570 := proc(n) combinat[fibonacci](n)^3 ; end proc:
seq(A056570(n),n=0..20) ;
-
Table[Fibonacci[n]^3, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2008 *)
-
a(n)=fibonacci(n)^3 \\ Charles R Greathouse IV, Sep 24 2015
-
concat(0, Vec(x*(1-2*x-x^2)/((1+x-x^2)*(1-4*x-x^2)) + O(x^30))) \\ Colin Barker, Jun 04 2016
-
[fibonacci(n)^3 for n in (0..30)] # G. C. Greubel, Feb 20 2019
A001655
Fibonomial coefficients: a(n) = F(n+1) * F(n+2) * F(n+3)/2, where F() = Fibonacci numbers A000045.
Original entry on oeis.org
1, 3, 15, 60, 260, 1092, 4641, 19635, 83215, 352440, 1493064, 6324552, 26791505, 113490195, 480752895, 2036500788, 8626757644, 36543528780, 154800876945, 655747029795, 2777789007071, 11766903040368, 49845401197200, 211148507782800, 894439432403425
Offset: 0
G.f. = 1 + 3*x + 15*x^2 + 60*x^3 + 260*x^4 + 1092*x^5 + 4641*x^6 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers cubed, Fib. Q. 58:5 (2020) 128-134.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Ronald Orozco López, Generating Functions of Generalized Simplicial Polytopic Numbers and (s,t)-Derivatives of Partial Theta Function, arXiv:2408.08943 [math.CO], 2024. See p. 13.
- Ronald Orozco López, Simplicial d-Polytopic Numbers Defined on Generalized Fibonacci Polynomials, arXiv:2501.11490 [math.CO], 2025. See p. 10.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- David Treeby, Further Physical Derivations of Fibonacci Summations, Fibonacci Quart. 54 (2016), no. 4, 327-334.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
-
[Fibonacci(n+3)*Fibonacci(n+2)*Fibonacci(n+1)/2: n in [0..30]]; // Vincenzo Librandi, May 09 2016
-
A001655:=1/(z**2-z-1)/(z**2+4*z-1); # Simon Plouffe in his 1992 dissertation.
-
Table[(Fibonacci[n+3]*Fibonacci[n+2]*Fibonacci[n+1])/2, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
LinearRecurrence[{3, 6, -3, -1}, {1, 3, 15, 60}, 25] (* Jean-François Alcover, Sep 23 2017 *)
-
b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j)); vector(20, n, b(n-1, 3)) \\ Joerg Arndt, May 08 2016
A066259
a(n) = Fibonacci(n)*Fibonacci(n+1)^2.
Original entry on oeis.org
1, 4, 18, 75, 320, 1352, 5733, 24276, 102850, 435655, 1845504, 7817616, 33116057, 140281700, 594243090, 2517253683, 10663258432, 45170286424, 191344405725, 810547906740, 3433536036866, 14544692047439, 61612304237568, 260993908980000, 1105587940186225, 4683345669678532
Offset: 1
- Harry J. Smith, Table of n, a(n) for n = 1..200
- D. Zeitlin, Generating Functions for Products of Recursive Sequences, Transactions A.M.S., 116, Apr. 1965, p. 304.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
-
First[#]Last[#]^2&/@Partition[Fibonacci[Range[30]],2,1] (* Harvey P. Dale, Mar 04 2011 *)
-
a(n) = { fibonacci(n) * fibonacci(n+1)^2 } \\ Harry J. Smith, Feb 07 2010
A197424
Number of subsets of {1, 2, ..., 4*n + 2} which do not contain two numbers whose difference is 4.
Original entry on oeis.org
4, 36, 225, 1600, 10816, 74529, 509796, 3496900, 23961025, 164249856, 1125736704, 7716041281, 52886200900, 362488284900, 2484529385121, 17029223715904, 116720020119616, 800010960336225, 5483356589096100, 37583485459535236, 257601040852192129
Offset: 0
- F. Alayont and E. Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs; submitted.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Mathramz Problem Solving Group, Solution for Problem 1854 in Mathematics Magazine Vol. 83, No.4, October 2010, February 28, 2011
- Marian Tetiva, Problem 1854, Mathematics Magazine, 84 (2011) 300.
- Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1).
-
Table[(1/25) (LucasL[2 (2 n + 5)] - 2 (-1)^n LucasL[2 n + 5] - 1), {n, 0, 20}] (* Michael De Vlieger, Mar 27 2016 *)
-
Vec((4+16*x-15*x^2-5*x^3+x^4) / ((1-x)*(1-7*x+x^2)*(1+3*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 26 2016
-
a(n) = (fibonacci(n+2)*fibonacci(n+3))^2; \\ Altug Alkan, Mar 26 2016
A099014
a(n) = Fibonacci(n)*(Fibonacci(n-1)^2 + Fibonacci(n+1)^2).
Original entry on oeis.org
0, 1, 5, 20, 87, 365, 1552, 6565, 27825, 117844, 499235, 2114729, 8958240, 37947545, 160748653, 680941780, 2884516383, 12219006325, 51760543280, 219261176861, 928805254905, 3934482189716, 16666734024715, 70601418270865
Offset: 0
-
[Fibonacci(n)*(Fibonacci(n-1)^2+Fibonacci(n+1)^2): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
-
CoefficientList[Series[x*(1 + 2*x - x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4), {x, 0, 50}], x] (* G. C. Greubel, Dec 31 2017 *)
Join[{0},#[[2]](#[[1]]^2+#[[3]]^2)&/@Partition[Fibonacci[ Range[ 0,30]],3,1]] (* or *) LinearRecurrence[{3,6,-3,-1},{0,1,5,20},30] (* Harvey P. Dale, Oct 17 2021 *)
-
a(n)=fibonacci(n)*(fibonacci(n-1)^2+fibonacci(n+1)^2) \\ Charles R Greathouse IV, Jun 05 2011
A220362
a(n) = Fibonacci(n-1) * Fibonacci(n) * Fibonacci(n+2).
Original entry on oeis.org
0, 3, 10, 48, 195, 840, 3536, 15015, 63546, 269280, 1140535, 4831632, 20466720, 86699067, 367262090, 1555748880, 6590255259, 27916773720, 118257343984, 500946159615, 2122041966330, 8989114051008, 38078498128175, 161303106631968, 683290924545600
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, D20.
-
Table[Fibonacci[n - 1] * Fibonacci[n] * Fibonacci[n + 2], {n, 30}] (* T. D. Noe, Dec 13 2012 *)
#[[1]]*#[[2]]*#[[4]]&/@Partition[Fibonacci[Range[0,30]],4,1] (* Harvey P. Dale, Jan 16 2016 *)
-
x='x+O('x^99); concat(0, Vec(x*(3+x)/((x^2-x-1)*(x^2+4*x-1)))) \\ Altug Alkan, Mar 26 2016
A099015
a(n) = Fib(n+1)*(2*Fib(n)^2 + Fib(n)*Fib(n-1) + Fib(n-1)^2).
Original entry on oeis.org
1, 2, 8, 33, 140, 592, 2509, 10626, 45016, 190685, 807764, 3421728, 14494697, 61400482, 260096680, 1101787113, 4667245276, 19770767984, 83750317589, 354772037730, 1502838469496, 6366125914117, 26967342128548
Offset: 0
-
[Fibonacci(n+1)*(2*Fibonacci(n)^2 + Fibonacci(n)*Fibonacci(n-1) + Fibonacci(n-1)^2): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
-
LinearRecurrence[{3,6,-3,-1},{1,2,8,33},30] (* Harvey P. Dale, Nov 28 2015 *)
CoefficientList[Series[(1-x-4*x^2)/((1+x-x^2)*(1-4*x-x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 31 2017 *)
-
a(n)=my(e=fibonacci(n-1),f=fibonacci(n));(e+f)*(2*f^2+f*e+e^2) \\ Charles R Greathouse IV, Jun 05 2011
-
first(n) = Vec((1 - x - 4*x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4) + O(x^n)) \\ Iain Fox, Dec 31 2017
A220363
a(n) = Fibonacci(n)^3 + (-1)^n*Fibonacci(n+2).
Original entry on oeis.org
1, -1, 4, 3, 35, 112, 533, 2163, 9316, 39215, 166519, 704736, 2986361, 12648727, 53583620, 226979403, 961507387, 4072998992, 17253519469, 73087050795, 309601764836, 1311494041879, 5555578042799, 23533806034368, 99690802469425, 422297015444207
Offset: 0
- R. K. Guy, Unsolved Problems in Number Theory, D20.
- Indranil Ghosh, Table of n, a(n) for n = 0..1593
- J. H. Jordan, B. E. Peterson, Almost regular integer Fibonacci pentagons, Rocky Mountain J. Math. Volume 23, Number 1 (1993), 243-247.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
-
Table[Fibonacci[n]^3 + (-1)^n * Fibonacci[n + 2], {n, 0, 30}] (* T. D. Noe, Dec 13 2012 *)
LinearRecurrence[{3,6,-3,-1},{1,-1,4,3},30] (* Harvey P. Dale, Mar 19 2022 *)
-
Vec((x^2-4*x+1)/((x^2-x-1)*(x^2+4*x-1)) + O(x^100)) \\ Colin Barker, Sep 23 2014
-
a(n) = fibonacci(n)^3 + (-1)^n*fibonacci(n+2) \\ Charles R Greathouse IV, Feb 14 2017
A177727
a(0)=1; a(n) = a(n-1) * Fibonacci(3+n) * Fibonacci(1+n) / (Fibonacci(n))^2, n > 1.
Original entry on oeis.org
1, 3, 30, 180, 1300, 8736, 60333, 412335, 2829310, 19384200, 132882696, 910735488, 6242420665, 42785803515, 293259265950, 2010026277756, 13776931957468, 94428478367520, 647222466507045, 4436128656563175, 30405678471399166, 208403619747957648, 1428419662108160400
Offset: 0
- Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, p. 93.
-
I:=[1, 3, 30, 180, 1300]; [n le 5 select I[n] else 5*Self(n-1)+15*Self(n-2)-15*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Nov 18 2011
-
with (combinat):
A177727 := proc(n)
if n = 0 then
1;
else
procname(n-1)*fibonacci(3+n)*fibonacci(1+n)/fibonacci(n)^2 ;
end if;
end proc:
seq(A177727(n),n=0..10) ; # R. J. Mathar, Nov 17 2011
-
a0 = 4; b0 = 2; c0 = 1;
a[0] = 1;
a[n_] := a[n] = (Fibonacci[(a0 + n - 1)]*Fibonacci[( b0 + n - 1)]/(Fibonacci[n]*Fibonacci[(c0 + n - 1)]))*a[n - 1];
Table[a[n], {n, 0, 30}]
LinearRecurrence[{5,15,-15,-5,1},{1,3,30,180,1300},30] (* Vincenzo Librandi, Nov 18 2011 *)
A215038
Partial sums of A066259: a(n) = Sum_{k=0..n} F(k+1)^2*F(k), n>=0, with the Fibonacci numbers F=A000045.
Original entry on oeis.org
0, 1, 5, 23, 98, 418, 1770, 7503, 31779, 134629, 570284, 2415788, 10233404, 43349461, 183631161, 777874251, 3295127934, 13958386366, 59128672790, 250473078515, 1061020985255, 4494557022121, 19039249069560, 80651553307128
Offset: 0
a(2) = 0 + 1^2*1 + 2^2*1 = 1 + 4 = 5.
Showing 1-10 of 11 results.
Comments